期刊文献+

嫦娥一号宇生伽马射线能谱分析 被引量:2

Analysis of Cosmogenic Radionuclides in Chang'e-1 Gamma-ray Spectrometer Spectra
下载PDF
导出
摘要 介绍了一种通过宇生伽马射线分析月表部分元素含量的方法。我国嫦娥一号卫星携带的伽马射线能谱仪(CE1-GRS)探测的伽马射线能谱中,既包含月表天然放射性元素(K、U、Th等)放出的伽马射线,也包含银河宇宙射线(GCR)与月表物质(Fe、Si、O等)发生簇射反应过程中产生的伽马射线。根据已知GCR的强度和能量分布,使用蒙特卡罗方法模拟,计算出GCR与月表物质反应产生的伽马射线特征峰及面积,并与CE1-GRS测量谱线相比较,建立了几种元素测量谱线与其月表含量的关系,该方法将可用于月表非天然放射性元素平均含量的计算。 A method for determination of concentration for some major elements on the lunar surface was introduced by analyzing gamma-ray spectrum produced by cosmogenic radionuclides.The gamma-ray spectra,recorded by Chang'e-1Gamma-ray Spectrometer(CE1-GRS),consist of gamma-rays released by the decay of natural radioactive elements on the lunar surface(such as K,U,Th),also include that produced by the interaction of surface material(Fe,Si,O)and galaxy cosmic ray(GCR)with shower reaction.According to the GCR flux,the gamma-ray spectra,including the full energy peaks and their peak areas,can be simulated and calculated by Monte Carlo method.Comparing simulation results with measured spectrum by CE1-GRS,the relationship between the full energy peak area and elemental concentration was established.This method could be used for calculating some elements' average abundance on the moon surface.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第S1期9-13,共5页 Atomic Energy Science and Technology
关键词 月球探测 CE1-GRS 伽马能谱 月表伽马射线 detecting of the moon CE1-GRS gamma-ray spectra gamma-ray emission from the moon
  • 相关文献

参考文献3

二级参考文献46

  • 1Chang Jin, Ma Tao, Zhang Nan, Cai Mingsheng, Gong Yizhong, Tang Hesen, Zou Yongliao, Liu Jianzhong and Xu Aoao, 2009. Gamma-ray detector on board lunar mission Chang'e-1. Journal of the Physical Society of Japan, 78: 262-268.
  • 2Korotev, R.L., 1999. A new estimate of the composition of the feldspathic upper crust of the Moon. Proc. Lunar Planet. Sci. Conf., 30th, 1303.
  • 3Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A. B., Elphic, R.C., Maurice, S., and Thomsen, D.R., 1998. Global elemental maps of the Moon: the Lunar Prospector Gamma-ray Spectrometer. Science, 284(5382): 1484-1489.
  • 4Lawrence, D.J., Feldman, W.C., Barraclough, B.L., Binder, A. B., Elphic, R.C., Maurice, S., Miller, M.C., and Prettyman, T. H., 2000. Thorium abundances on the lunar surface. Journal of Geophysical Research, 105(E8): 20307-20331.
  • 5Lawrence, D.J., Maurice, S., and Feldman, W.C., 2004. Gammaray measurements from Lunar Prospector: Time series data reduction for the Gamma-ray Spectrometer. Journal of Geophysical Research, 109(E07): 1-23.
  • 6Ma Tao, Chang Jin, Zhang Nan Cai Mingsheng, Gong Yizhong, Tang Hesen, Zou Yongliao, Liu Jianzhong and Xu Aoao, 2008. Gamma-ray detector on board ltmar mission Chang'E-l. Advances in Space Research, 42(2): 347-349.
  • 7Metzger, A.E., Trombka, J.I., Reedy, R.C., and Arnold, J.R., 1974. Element concentrations from lunar orbital gamma ray measurements. Proc. Lunar Planet. Sci. Conf., 5th, 10671- 10678.
  • 8Metzger, A.E., Haines, E.L., Parker, R.E., and Radocinski, R.G.., 1977. Thorium concentrations in the lunar surface: I. Regional values and crustal content. Proc. Lunar Planet. Sci. Conf., 8th, 949-977.
  • 9Metzger, A.E., Haines, E.L., Etchegaray-Ramirez, M.I., andHawke, B.R., 1979. Thorittm concentrations in the lunar surface: III. Deconvolution of the Apennius region. Proc. Lunar Planet. Sci. Conf., lOth, 1701-1718.
  • 10Metzger, A.E., Etchegaray-Ramirez, M.I., Haines, E.L., and Hawke, B.R., 1981.Thorium concentrations in the lunar surface: V. Deconvolution of the central highlands region. Proc. Lunar Planet. Sci. Conf., 12th, 751-766.

共引文献32

同被引文献25

  • 1李泳泉,刘建忠,欧阳自远,李春来,邹永廖.月球表面岩石类型的分布特征:基于Lunar Prospector (LP)伽马射线谱仪探测数据的反演[J].岩石学报,2007,23(5):1169-1174. 被引量:14
  • 2Hasebe N, Yamashita N, Okudaira O, et al. The high precision gamma-ray spectrometer for lunar polar orbiter SELENE[J]. Advances in Space Research, 2008, 42: 323-330. DOI: 10.1016/J.ASR.2007.05.046.
  • 3Reedy R. Predicting the production rates of cosmogenic nuclides[J]. Nuclear Instruments and Methods in Physics Research, 2000, B172: 782-785. DOI: 10.1016/ S0168-583X(00)00107-5.
  • 4Leya I, Michel R. Cross sections for neutron-induced reactions up to 1.6 GeV for target elements relevant for cosmochemical, geochemical, and technological applications[J]. Nuclear Instruments and Methods in Physics Research, 2011, B269: 2487-2503. DOI: 10.1016/J.NIMB.2011.07.011.
  • 5Lee D C, Halliday A N, Leya I, et al. Cosmogenic tungsten and the origin and earliest differentiation of the Moon[J]. Earth and Planetary Science Letters, 2002, 198: 267-274. DOI: 10.1016/S0012-821X(02)00533-2.
  • 6Ota S, Sihver L, Kobayashi S, et aL Depth dependency of neutron density produced by cosmic rays in the lunar subsurface[J]. Advances in Space Research, 2014, 54: 2114-2121. DOI: 10.1016/J.ASR.2014.02.002.
  • 7Wieler R. The solar noble gas record in lunar samples and meteorites[J]. Space Science Reviews, 1998, 85:303-314 DOI: 10.1023/A: 1005166904225.
  • 8Binns R. Cosmic-ray origins[J]. Science, 2011, 334: 1071-1072. DOI: 10.1126/science,1213490.
  • 9Reedy R, Arnold J, Lal D. Cosmic-ray record in solar system matter[J]. Science, 1983, 219: 127-135. DOI: 10.1126/science.219.4581.127.
  • 10Sonett P. The sun in time[M]. Tucson: Arizona State University Press, 1991: 990.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部