期刊文献+

Pu^(4+)在人体血浆中分布的计算机模拟研究

Computer Simulation of Pu^(4+) Speciation Distribution in Human Blood Plasma
下载PDF
导出
摘要 建立了由多种金属离子和小分子配体组成的多相人体血浆热力学平衡模型,并用该模型模拟研究了Pu4+在血浆中的形态分布及二乙三胺五乙酸(DTPA)和CO2-3、Citrate3-浓度对细胞液中Pu4+形态分布的影响。结果显示,血浆中的低浓度Pu4+易以Pu(OH)4(l)的形态蓄积在肝脏中,钚浓度升高则形成沉淀Pu(OH)4(s),难以排出体外。在DTPA浓度为2.5×10-5 mol/L时,血浆中水溶性小分子[Pu(OH)DTPA]2-含量达到最高并保持稳定。酸性条件下随着Citrate3-浓度的升高,血浆中Pu4+与Citrate3-结合形成可溶性的[PuCitrate2]2-和[PuCitrate]+的离子化合物。DTPA浓度大于4.6×10-5 mol/L时,血浆中的DTPA以与Ca2+、Mg2+结合形成的[CaHDTPA]2-、[Ca2DTPA]-、[CaDTPA]3-、[MgHDTPA]2-、[MgDTPA]3-小分子结合态为主。 A thermodynamic equilibrium model consisted of multi-metal ion and low molecular-weight ligand was constructed to study the speciation of Pu4+in human blood plasma and the influences of concentrations of DTPA,CO2-3and Citrate3-on the speciation.Computer simulation indicates that low concentration of Pu4+in blood plasma with Pu(OH)4(l)speciation accumulates in liver.Pu4+form precipitation is difficult to eliminate from the body under the high concentration of Pu4+in plasma fluids.When the concentration of DTPA is 2.5×10-5 mol/L,the species of plutonium is mainly as negatively charged[Pu(OH)DTPA]2-and maintains stable.The species was at firstcalculated at pH 5.0,with the increase of concentration of Citrate3-,the major speciation of Pu4+is as[PuCitrate2]2-and[PuCitrate]+which are excreted easily from body.In blood plasma Pu4+combines with Ca2+and Mg2+to form [CaHDTPA]2-,[Ca2DTPA]-,[CaDTPA]3-,[MgHDTPA]2-and[MgDTPA]3-when the concentration of DTPA is 4.6×10-5 mol/L,which excrete Pu4+and produce toxic side effects on bone at the same time.
作者 邓冰
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2014年第S1期786-793,共8页 Atomic Energy Science and Technology
基金 中国工程物理研究院核物理与化学研究所创新基金资助项目(2013CX02) 中国工程物理研究院科学技术发展基金资助项目(2013B0301036)
关键词 Pu4+ 血浆 形态 热力学平衡 Pu4+ blood plasma speciation thermodynamic equilibrium
  • 相关文献

参考文献3

二级参考文献30

  • 1吴展.关于全面禁止核试验的问题[J].美国研究,1998,12(3):7-29. 被引量:2
  • 2阎效珊.钚在人体内的代谢[J].国外医学(放射医学核医学分册),1994,18(5):201-204. 被引量:4
  • 3朱昌寿.放射性碘的危害评价[J].国外医学(放射医学核医学分册),1995,19(4):172-176. 被引量:15
  • 4Skwarzec B,Struminska D I.Alicja Borylo.Bioaccumulation and distribution of plutonium in fish from Gdansk Bay[J].Journal of environmental radioactivity,2001,55:167-178.
  • 5Wang J J,Chen I J,Chiu J H.Sequential isotopic determination of plutonium,thorium,americium,strontium and uranium in environmental and bioassay samples[J].Applied Radiation and Isotopes,2004,61: 299-305.
  • 6Webb L M,Taylor D M,Williams D R.Computer modelling of the chemical speciation of lanthanide and actinide elements in the human gastrointestinal tract[J].Journal of Alloys and Compounds,1998,271-273: 112-115.
  • 7Sinkov S I,Bozhenko E I.Complexation behavior of Pu(Ⅳ) and Pu(Ⅵ) with urea in nitric acid solution[J].Journal of Alloys and Compounds,1998,271-273: 809-812.
  • 8Williams David R.Chemical speciation contributing to research knowledge and everyday life[J].Coord Chem Rev,1999,185-186: 177-188.
  • 9Mark P Jensen,Drew Gorman-Lewis.An iron-dependent and transferrin-mediated cellular uptake pathway for plutonium[J].Nature (chemical biology),2011,7:560-565.
  • 10Durbin P W,Kullgren B,Ebbe S N,et al.Chelating agents for uranium(Ⅵ): 2.Efficacy and toxicity of tetradentate catecholate and hydroxypyridinonate ligands in mice[J].Health Phys,2000,78 (5): 511-521.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部