期刊文献+

由热学性质获取氩晶体原子间各阶力常数 被引量:1

Calculations of the interatomic force constants of argon crystal from its thermal properties
下载PDF
导出
摘要 本文基于晶格动力学和量子力学微扰理论推导了氩晶体的热膨胀系数和比热与原子间相互作用的各阶力常数之间的关系公式,在此基础上根据热膨胀系数和比热的数据计算了氩晶体内的原子间相互作用的各阶力常数,并根据这些力常数绘制了原子间相互作用势能曲线,经比对发现该势能曲线与Morse势能曲线能较好吻合,这表明,本文提出的从热膨胀系数和比热获取各阶力常数的方法是正确的. The formulas to describe thermal expansion coefficient and heat capacity of argon crystal in terms of interatomic force constants are derived based on the lattice dynamics and perturbation theory of quantum mechanics,and then the interatomic force constants are obtained from thermal expansion coefficients and heat capacities of argon crystal with these formulas. Finally the interatomic potential energy curve is plotted based on these force constants. It is found that this potential energy curve coincides with the Morse potential energy curve well,this means that the method of obtaining the interatomic force constants of argon crystal from thermal properties is correct.
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2014年第6期1015-1018,共4页 Journal of Atomic and Molecular Physics
基金 国家自然科学基金课题(51005047) 湖南省自然科学基金课题(09JJ6088)
关键词 热学性质 微扰论 晶格动力学 原子间力常数 Thermal property Perturbation theory Lattice dynamics Interatomic force constant
  • 相关文献

同被引文献9

  • 1Takenaka K. Negative thermal expansion materials:technological key for control of thermal expansion[J ]. Sci. Technol. Adv. Mater.,2012, 13:013001.
  • 2Erfling H D. Studien zur thermischen Ausdehnungfester Stoffe in tiefer Temperatur. Ill (Ca, Nb, Th,V,Si, Ti, Zr) [J]. Ann. Physik,1942,41: 467.
  • 3Ibach H. Thermal expansion of silicon and zinc ox-idePhys. Status Solidi,1969,31: 625.
  • 4Xu C H, Wang C Z, Chan C T, et al. Theory ofthe thermal expansion of Si and diamond[J]. Phys.Rev. B,1991,43: 5024.
  • 5Rignanese G M, Michenaud J P,Gonze X. Ab initiostudy of the volume dependence of dynamical andthermodynamical properties of silicon [J]. Phys.Rev. B,1996,53: 4488.
  • 6NoyaJC,Herrero C P. Ramirez R. Thermodynam-ic properties of c-Si derived by quantum path-in-tegral Monte Carlo simulations[J]. Phys. Rev. B,1996,53: 9869.
  • 7Zhang W, Yu H,Lei S,et al. Modeling of siliconthermal expansion using strained phonon spectra[J ]. J. Micromech, Microeng. , 2012. 22:085007.
  • 8Stiliinger F H,Weber T A. Computer simulation oflocal order in condensed phases of silicon[J]. Phys.Rev. B,1985,31: 5262.
  • 9Bottger H. Principles of the theory of lattice dy-namics[M]. Weinheim: Physik-Verlag, 1983 : 15.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部