期刊文献+

一种改进的基于混合高斯分布模型的自适应背景消除算法 被引量:19

An Improved Background Subtraction Using Adaptive Gaussian Mixture Models
下载PDF
导出
摘要 视频检测技术是智能交通系统研究中一个重要研究方向,根据交通流视频检测的特点,对基于混合高斯分布模型的自适应背景消除方法进行了改进.包括:背景模型匹配只使用亮度信息;将高斯分布模型按权值、方差排序;使用单目深度信息来确定背景;动态调整采样频度等.实验表明,本文提出的算法,分割效果较佳,分割的实时性大大增强. The video vehicle detection technique is an important research field of ITS. Based on the features of video vehicle detection, this paper improves the method of background subtraction using adaptive Gaussian mixture models. These improvements include: background model matching uses only the luminance information; ranking Gaussian mixture models according to weight and variance; selecting background model using monocular depth information; making dynamic adjustment of sampling rate. The experiments show that the segment quality is good, and real_time performance is greatly improved.
出处 《北方交通大学学报》 CSCD 北大核心 2003年第6期22-25,共4页 Journal of Northern Jiaotong University
基金 高等学校博士学科点专项科学基金资助项目(2000000413)
关键词 图像处理 混合高斯分布模型 背景消除 视频检测 image processing Gaussian mixture model background subtraction video vehicle detection
  • 相关文献

参考文献6

  • 1[1]Huwer S, Niemann H. Adaptive Change Detection for Real-time Surveillance Applications[A].Proceedings. 3rd IEEE International Workshop on Visual Surveillance[C]. 2000. 37-46.
  • 2[2]Wern C R, Azarbaycjani A, Darrell T, et al. Pfinder: Real-time Tracking of Human Body[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19: 780-785.
  • 3[3]Stauffer C, Grimson W E L. Adaptive Background Mixture Models for real-time Tracking[J]. IEEE Conf, on CVPR. 1999,2:246-252.
  • 4[4]Elgammal A, Harwood D, Davis L. Non-parametric Model for Background Subtraction[EB/OL]. www.cs.umd.edu/users/elgammal/docs/eccv2000.pdf 2000.
  • 5[5]Gordon G, Darrel T, Harville M, et al. Background Estimation and Removal Based on Range and Color[J]. IEEE Conf, on CVPR. 1999,2:459-464.
  • 6[6]Harville M, Gordon G, Woodfill J. Foreground Segmentation Using Adaptive Mixture Models in Color and Depth[A]. Proceedings of the IEEE Workshop on Detection and Recognition of Events in Video[C]. Vancouver:Canadu,2001. 3-11.

同被引文献173

引证文献19

二级引证文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部