摘要
设计了一种控制连续非线性系统中混沌的新方法———变量变化率脉冲反馈 (VRPF)方法 .介绍了VRPF方法的控制原理以及反馈系数和脉冲间隔的选择技巧 .将此方法应用到BZ反应 3D模型系统混沌的控制中 ,计算机仿真模拟显示 ,通过恰当地选择反馈系数和脉冲间隔 ,可以将系统稳定在 1p、2p、3p、4p、…、2 n× 3mp (n、m为整数 )这样不同的周期轨道 ,从而使系统的功率谱也由混沌态时的连续谱转变为具有分立单峰的分立谱 .此外 。
A new method, variable rate pulse feedback (VRPF), is presented in order to control chaos in continuous nonlinear system. The selection technique of the feedback coefficients and the pulse interval is introduced. The method is applied, for example, to control the chaotic dynamical behaviors in the Belousov-Zhabotinsky (BZ) reaction system of the 3D model. The numerical results show that the system can be stabilized at the different periodic orbits of 1 p, 2p, 3p, 4p, ..., 2(n) x 3(m) p (n, m are integers) by appropriately selecting the feedback coefficients and the pulse interval, and the power spectra of the system can also be changed from the continuous spectra in the chaotic state into the discrete spectra having some separate single peaks. Besides, the VRPF method is of an extremely wide control region found from the computer simulation.
基金
ProjectSupportedbytheNationalNatureScienceFoundationofChina (10 175 0 32 )andNatureScienceFoundationofLiaoningEducationalCommittee (2 0 2 12 2 0 2 3)