期刊文献+

几何非线性复合材料层合固体壳单元 被引量:2

COMPOSITE LAMINATED SOLID SHELL ELEMENT FOR GEOMETRICALLY NONLINEAR ANALYSIS
下载PDF
导出
摘要  通过定义广义应力,提出了一个改进的刚度矩阵,以克服固体壳元的厚度自锁问题,并能保证沿复合材料层合结构厚度方向上的连续应力分布;将应力插值函数分为低阶和高阶两部分,建议了一个新的非线性变分泛函,推导了一个用于几何非线性分析的九节点固体壳单元,该单元的计算精度和效率基本上与九节点减缩积分单元相当,与同类型其他单元相比,该单元显著提高了计算效率。 Starting from defining generalized stress, this paper presents a modified stiffness matrix method to overcome the thickness locking of solid shell elements and guarantee the continuous distribution of the transverse normal stress of composite laminate shell structures. By splitting the stress into lower order term and higher order term, a nonlinear variation principle is developed and a 9-node solid shell element with 6 DOF per node is derived for the geometrically nonlinear analysis of composite laminated shells. The higher order assumed stress modes are judiciously selected to vanish at the sampling points of the second order quadrature and their energy products with the displacement-derived covariant strain can be programmed without resorting to numerical integration. The accuracy of the present element is virtually identical to that of the uniformly reduced integration (URI) element yet with a little additional computational cost for the stabilization matrix. The stabilization matrix is of prime importance as the global tangential stiffness matrices resulting from the URI elements often become singular after a few iterations.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2003年第3期7-12,共6页 Acta Materiae Compositae Sinica
基金 国家自然科学基金重点项目(50135030) 面上项目(10072026) 江苏自然科学基金(BK2002090)资助
关键词 固体壳 厚度自锁 几何非线性 复合材料 稳定 Composite materials Geometry Integration Laminated composites Stabilization Stiffness matrix Stresses
  • 相关文献

参考文献9

  • 1[1]Kim Y H, Lee S W. A solid element formulation for large deflection analysis of composite shell structures [J]. Computers & Structures,1988,30:269-274.
  • 2[2]Klinkel S,Gruttmann F, Wagner W.A continuum based three- dimensional shell element for laminated structures [J]. Comput & Struct,1999,71:43-62.
  • 3[3]Betsch P,Gruttmann F, Stein E. A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains [J].Comput Methods Appl Mech Engrg, 1996,130:57-79.
  • 4[4]Betch P,Stein E.An assumed strain approach avoiding artificial thickness straining for a non-linear 4-node shell element [J]. Commun Numer Methods Engrg,1995,11:899-909.
  • 5[5]Park H C,Cho C,Lee S W.An efficient assumed strain element model with 6 dof per node for geometrically nonlinear shells [J]. Inter J Numer Methods Engrg, 1995,38:4101-4122.
  • 6[6]Hauptmann R,Schweizerhof K.A systematic development of solid-shell element formulations for linear and non-linear analysis employing only displacement degrees of freedom [J].Inter J Numer Methods Engrg, 1988,42:49-69.
  • 7[7]Sze K Y, Yao L Q. A hybrid-stress ANS solid-shell element and its generalization to smart structure modeling,part Ⅰ: Solid-shell element formulation; part Ⅱ: Smart structure modeling [J]. Inter J Numer Methods Engrg, 2000,48:545-582.
  • 8[8]Zheng S J, Chen W J.Geometrically nonlinear generalized hybrid element and refined element method for non-conforming modes [J]. Acta Mechanica Sinica, 1995,11(2):178-185.
  • 9[9]Gruttmann F,Klinkel S, Wagner W. A finite rotation shell theory with application to composite structures [J]. Rev Eur Elements Finis, 1995,4:597-631.

同被引文献20

  • 1段海娟,张其林.考虑翘曲效应的薄壁曲梁几何非线性分析[J].工程力学,2004,21(5):157-160. 被引量:17
  • 2卢少微,谢怀勤.智能CFRP加固RC梁荷载效应的实时模拟与测评[J].复合材料学报,2006,23(3):158-164. 被引量:12
  • 3司炳君,孙治国,艾庆华.Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑,2007,37(1):87-92. 被引量:55
  • 4薛伟辰,王晓辉.有黏结预应力CFRP筋混凝土梁试验及非线性分析[J].中国公路学报,2007,20(4):41-47. 被引量:27
  • 5Sallam S, Simitses G J. Nonlinear analysis of laminated antisymmetric flat plates subjected to eccentric compression [J]. Journal of Composite Structure, 1984, 2(6): 272-281.
  • 6Cosenza E, Manfredi G, Realfonzo R. Behavior and modeling of bond of FRP rods to concrete[J].ASCE, Journal of Composites for Construction, 1997, 1(1): 40-51.
  • 7Malvar L J, CoxJ V, Cochran K B. Bond between CFRP bars and concrete I : Experimental study[J]. ASCE, Journal of Composites for Construction, 2001, 5(2): 154-163.
  • 8Rehm G, Franke L. Plastic bonded fiber glass rods as reinforcement for concrete [J].Civil Engineering, 1974, 51(4): 115-120.
  • 9Mutsuyoshi H, Veharak K, Machida A. Mechanical properties and design methods of concrete beams reinforced with CFRP[J]. Transaction of Japan Concrete Institute, 1990, 12(1): 231-238.
  • 10Yonekura A, Tazawa E. Flexural characteristics of prestressed concrete beams using fiber plastic rods as prestressing tendons [J]. Transaction of Japan Concrete Institute, 1991, 13(1): 239-246.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部