期刊文献+

基于SVR的混沌时间序列预测 被引量:12

Chaotic Time Series Prediction Based on SVR
下载PDF
导出
摘要 支持向量机是一种基于统计学习理论的新颖的机器学习方法,由于其出色的学习性能,该技术已成为当前国际机器学习界的研究热点。这种方法已广泛用于解决分类和回归问题。论文介绍了支持向量回归算法的各种版本,同时将它们应用到混沌时间序列预测中,并且比较了它们的预测性能,为实际应用合理选择模型提供一定的依据。 Support vector machines(SVM)are a kind of novel machine learning methods,based on statistical learning theory,which have become the hotspot of machine learning because of their excellent learning performance.The method of support vector machines has been developed for solving classification and regression problems.Several versions of support vector regression(SVR)are introduced in this paper,and then apply them to chaotic time series prediction.Their performance of prediction is analyzed,which can provide some foundation about reasonable selecting models in practice.
出处 《计算机工程与应用》 CSCD 北大核心 2004年第2期54-56,共3页 Computer Engineering and Applications
基金 广东省自然科学基金资助(编号:021349)
关键词 支持向量机 回归 混沌时间序列 核函敬 support vector machines,regression,chaotic time series,kernel function
  • 相关文献

参考文献8

  • 1[1]Vapnik V N.Statistical Learning Theory[M].New York,Wiley,1998
  • 2[2]Smola A J,Scholkopf B.A tutorial on support vector regression[R].NeuroCOLT TR NC-TR-98-030,Royal Holloway College University of London,UK,1998
  • 3[3]Rodrigo Fernandez.Predicting time series with a local support vector regression machine[C].In:ACAI 99,1999
  • 4[4]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition[J].Knowledge Discovery and Data Mining,1998;2(2)
  • 5[5]Cortes C,Vapnic V.Support-vector networks[J].Machine Learning,1995;20(3):273~297
  • 6[6]B Schilkopf,P Bartlett et al.Support vector regression with automatic accuracy control.Proceedings[C].ICANN 98,1998
  • 7[7]J A K Suykens,J Vandewalle.Least squares support vector machine classifiers[J].Neural Processing Letters,1999;9(3):293~300
  • 8[8]J A K Suykens,J Vandewalle.Recurrent Least squares support vector machine[J].IEEE Transactions on Circuits and Systems-I,2000;7(47):1109~1114

同被引文献122

引证文献12

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部