摘要
A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.
A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.