期刊文献+

关于平面点集的凸分解

On convex decompositions of points in the plane
下载PDF
导出
摘要 给定处于一般位置的平面点集S,可将S划分为若干空凸子集使得这些子集的并形成一简单多边形P,并且S的每一个点均位于P的边界上.称P中这样的空凸k-子集为一k-胞腔.令f(S)为S的划分中所含胞腔的最小数,F(n)=max{f(S):S E2,|S|=n,无三点共线}.利用构造法将F(n)的下界改进为n+14. Let S be a finite planar point set in general position. S can be partitioned into convex cells, such that the union of the cells forms a simple polygon P, and every point of S is on the boundary of P, such empty convex k-subset of P is called a k-cell. Let f(S) be the minimum number of cells obtained in such a partition of S. F(n)=max{f(S):S is a n-point planar set in general position}. The lower bound of F(n) is improved to n+14 .
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期468-470,共3页 Journal of Central China Normal University:Natural Sciences
基金 河北省自然科学基金资助项目(199174) 河北师范大学科学研究基金资助项目(Q200203).
关键词 空凸子集 k-胞腔 划分 empty convex subset k-cell partition
  • 相关文献

参考文献2

  • 1PachJ To′th G.A generalization of the Erd os-Szekeres theorem to disjoint convex sets[J].Discrete and Comu-tational Geometry,1998,19:437-445.
  • 2TothG Valtr P.Note on the Erd o¨s-Szekeres theorem[J].Discrete and Comutational Geometry,1998,19:457-459.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部