摘要
给定处于一般位置的平面点集S,可将S划分为若干空凸子集使得这些子集的并形成一简单多边形P,并且S的每一个点均位于P的边界上.称P中这样的空凸k-子集为一k-胞腔.令f(S)为S的划分中所含胞腔的最小数,F(n)=max{f(S):S E2,|S|=n,无三点共线}.利用构造法将F(n)的下界改进为n+14.
Let S be a finite planar point set in general position. S can be partitioned into convex cells, such that the union of the cells forms a simple polygon P, and every point of S is on the boundary of P, such empty convex k-subset of P is called a k-cell. Let f(S) be the minimum number of cells obtained in such a partition of S. F(n)=max{f(S):S is a n-point planar set in general position}. The lower bound of F(n) is improved to n+14 .
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2003年第4期468-470,共3页
Journal of Central China Normal University:Natural Sciences
基金
河北省自然科学基金资助项目(199174)
河北师范大学科学研究基金资助项目(Q200203).
关键词
空凸子集
k-胞腔
划分
empty convex subset
k-cell
partition