期刊文献+

城市规模分布的Weibull模型:理论基础与实证分析 被引量:5

A Weibull-type model on city-size distributions: the revised result and its empirical analysis of Curry's entropy-maximizing model
下载PDF
导出
摘要 基于城市地理系统的分数维思想,修正了Curry的最大熵模型,得到关于城市规模分布的Weibull模型:M(i≤P)/n=1-exp[-(P/u)v],并论证了约束性参数与Zipf维数的内在关系,从而从新的角度解释了城市等级体系的分形性质及其数理特征.利用河南省多年(1990~1996)的城市人口数据对本文发展的数学模型进行验证,取得了令人满意的结果. The entropy maximization model on rank-size rule of urban hierarchies presented by L. Curry (1964) is revised and improved and a new model of city-size distributions is advanced as follows:M(i≤P)/n=1-exp, which is identical in form to the Weibull's distribution. On the other hand, as for P<u, the new model can be re-expressed approximately as M(i≤P)=n(P/u)~v, where i is the size of a city, P represents the threshold value of city size, u denotes the mean size of cities in an urban system, n implies the number of cities, M means number of the cities sizes of which are greater than the threshold value P, and v as a power exponent has some nature and meaning of fractal dimension. An empirical analysis is made based on the system of cities in Henan Province, China, and the results show that the new model given in the paper can be employed to characterize size distributions of cities in real world more effectively than the well-known Zipf's law.
作者 陈彦光 况颐
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2003年第4期562-566,共5页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金资助项目(40071035).
关键词 城市体系 位序-规模法则 最大熵原理 分形 空间复杂性 河南省 urban system rank-size rule entropy-maximizing method fractal dimension spatial complexity Henan province
  • 相关文献

参考文献4

二级参考文献13

  • 1陈勇,陈嵘,艾南山,李后强.城市规模分布的分形研究[J].经济地理,1993,13(3):48-53. 被引量:117
  • 2陈彦光,信阳师范学院学报,1998年,11卷,3期,264页
  • 3周一星,城市地理学,1995年
  • 4Carroll C. National city-size distributions: What do we know after 67 years of research? Progress in Human Geography, 1982, 6:1
  • 5Flam F. Hints of a language in junk DNA.Science, 1994, 266:1320
  • 6Curry L. The random spatial economy: An exploration in settlement theory. Annals of the Association of American Geographers, 1964,54:138
  • 7Nicolis, et al. Chaotic dynamics, Markov partitions, and Zipf' s law. Journal of Statistical Physics, 1989, 54:915
  • 8Mandelbrot B B. The Fractal Geometry of Nature. New York: Freeman W H and Company, 1983. 334~345
  • 9Salingaros N A, et al. Auniversal rule for the distributinn of sizes. Environment and Planning B:Planningand Design, 1999, 26:909
  • 10Davis K. World urbanization: 1950-70. In: Bourne I S, et al. eds. Systems of Cities. New York: Oxford University Press, 1978.92

共引文献213

同被引文献87

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部