期刊文献+

甘蓝与芸薹属5个近缘物种的基因组原位杂交分析 被引量:24

Genomic in situ hybridization (GISH) analysis of B. oleracea and 5 related Brassica species
下载PDF
导出
摘要 利用基因组原位杂交(GISH)技术,研究了甘蓝基因组与芸薹属其它5个近缘物种基因组间的相互关系。以标记的甘蓝(CC,2n=18)的基因组总 DNA为探针,分别同二倍体甘蓝、白菜型油菜(AA,2n=20)、黑芥(BB,2n=16)和异源四倍体芥菜型油莱(AABB,2n=36)、埃塞俄比亚芥(BBCC,2n=34)、甘蓝型油莱(AACC,2n=38)的中期染色体杂交,甘蓝、白菜型油菜和甘蓝型油菜的所有染色体上都有杂交信号,不能区分A、C基因组。黑芥染色体上只有零星的弱小信号,埃塞俄比亚芥的中期染色体显示出18个明显的信号,可以区分出C、B基因组;芥菜型油菜的中期染色体显示出20个明显的信号,其余染色体上信号很弱或无,可以区分出A、B基因组。说明在长期的进化过程中,甘蓝与白菜型油菜、甘蓝型油菜的亲缘关系较近,基因组的分化程度较小,而甘蓝与黑芥的亲缘关系较远,基因组的分化程度较前者高;甘蓝与芥菜型油菜和埃塞俄比亚芥间的亲缘关系介于上述二者之间。 Genomic in situ hybridization (GISH) was used to study the relationship between B. oleracea ge- nome and 5 related Brassica species. The labeled total DNA of B. oleracea was hybridized to the metaphase chromo- somes of B. oleracea, B. rapa, B. nigra, B. juncea, B. carinata and B. napus. Strong signals were detected in each chromosomes of B. oleracea, B. rapa and B. napus, the A and C genomes were not discriminated. The scattered sig- nals detected in B. nigra were very faint and small. The 18 chromosomes showed strong signals and the otheT show weak signals in B. carinata, the C and B genome chromosomes were obviously distinguished. The 20 chromosomes showed strong signals and the other show weak signals in B. juncea, the A and B genome chromosomes were also obviously distinguished. The results indicate that, in the course of long -- term evolution, B. oleracea had very closed relationship with B. rapa and B. napus, division of genome degree was relatively little; and the relationship between B. oleracea and B. nigra was relatively far, the division degree of the genome was higher than the former. The relationship between B. oleracea and B. juncea, B. carinata was lied between above -- mentioned two.
出处 《中国油料作物学报》 CAS CSCD 北大核心 2003年第4期16-19,F003,共5页 Chinese Journal of Oil Crop Sciences
基金 国家自然科学基金项目(30170585 39830270) 徐州师范大学自然科学基金重点项目(02AXL006)
关键词 甘蓝 芸薹属 近缘物种 基因组 原位杂交 Genomic in situ hybridization (GISH) Brassica B. oleracea Genomic divergence
  • 相关文献

参考文献1

二级参考文献16

  • 1[1]Schmidt R, Acarkan A, Boivin K. Comparative structural genomics in the Brassica family[J]. Plant Physiologelogy Biochemical, 2001,39:253-262.
  • 2[2]Lagercrantz U, Lydiate D J. Comparative genome mapping in Brassica[J]. Genetics, 1996,144:1903-1910.
  • 3[3]Song K M, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution[J]. Proc Natl Acad Sci USA, 1995,92:7719-7723.
  • 4[4]Warwick S L, Black L D. Molecular systematics of Brassica and allied genera (Subtribe Brassicinae, Brassiceae)-Chloroplast genome and cytodeme dongruence[J]. Theor Appl Genet, 1991,82:81-92.
  • 5[5]Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragmenth length polymorphisms (RFLPs) 1. Genome evolution of diploid and amphidiploid species[J]. Theor Appl Genet, 1988,75:784-794.
  • 6[6]Maluszynska J, Heslop-Harrison J S. Physical mapping of rDNA loci in Brassica species[J]. Genome, 1993,36:774-781.
  • 7[7]Gill B S, Friebe B. Plant cytogenetics at the dawn of the 21st century[M]. Current Opinion in Plant Biology, 1998.109-115.
  • 8[8]Kenton A, Parokonny A S, Gleba X Y. Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics[J]. Mol Gen Genet, 1993,240:159-169.
  • 9[9]Mukai Y, Gill B S. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and repeated DNA probes[J]. Genome, 1993,36:489-494.
  • 10[10]Li C B, Zhang D M, Ge S, et al. Identification of genome constitution of Oryza mulampuzhaensis, O.minuta. and O.punctata by multicolor genomic in situ hybridization[J]. Theor Appl Genet, 2001,103:204-211.

共引文献29

同被引文献498

引证文献24

二级引证文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部