摘要
设Ω是一个具有对合反自同构的有限维中心代数且charΩ≠2.本文在Ω上定义了广对称矩阵和斜广对称矩阵,在Ω[λ]上考虑了三个矩阵方程组,分别给出了其有广对称解和斜广对称的充要条件.作为特例,得到了某些矩阵方程相应的结果.
Let Ω be a finite dimensional central algebra with an involutorial antiauto-morphism and char Ω≠2. Persymmetric and perskewsymmetric matrices over Ω are defined. Three systems of matrix equations over Ω[λ] are considered. Necessary and sufficient conditions for the existences of constant solutions with persymmmetric and perskewsymmetric constraints to the systems mentioned above are given. As a special case, some results dealing with the corresponding matrix equations are also presented.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第1期27-34,共8页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金资助项目
关键词
广对称矩阵
斜广对称矩阵
矩阵方程组
Persymmetric matrix
Perskewsymmetric matrix
System of linear equations