期刊文献+

序列覆盖的闭映射保持可度量性 被引量:1

Metrizability is Preserved by Sequence-Covering and Closed Maps
原文传递
导出
摘要 设f:X→Y是连续的满映射. f称为序列覆盖映射,若{y})是Y中的收敛序列,则存在X中的收敛序列{xn},使得每一xn∈f-1(yn);f称为1序列覆盖映射,若对于每-y∈Y,存在x∈f-1(y),使得如果{yn}是Y中收敛于点y的序列,则有X中收敛于点x的序列{xn},使得每一xn∈f-1(yn).本文研究度量空间序列覆盖的闭映射之构造,否定地回答了Topology and its Applications上提出的一个问题. Let f : X →Y be a continuous and surjective map. f is a sequence-covering map if whenever {yn} is a convergent sequence in Y there is a convergent sequence {xn} in X with each xn ∈ f-1(yn). f is a 1-sequence-covering map if for each y ∈ Y, there is x ∈ f-1(y) such that whenever {yn} is a sequence converging to y in y there is a sequence {xn} converging to x in X with each xn ∈ f-1(yn}. In this paper the structure of sequence-covering and closed maps of metric spaces is investigated, a problem posed by 'Topology and its Applications' is negatively answered.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第1期87-90,共4页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10171043 10271026)
关键词 度量空间 闭映射 序列覆盖映射 Metric spaces Closed maps Sequence-covering maps
  • 相关文献

参考文献1

二级参考文献2

  • 1林寿,广义度量空间与映射,1995年
  • 2林寿,Acta Math Sin New Ser

共引文献71

同被引文献26

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部