摘要
非线性不可约特征标次数的重数全部为1的有限群的分类是熟知的.对可解群,本文讨论更一般的,即非线性不可约特征标次数的重数都与群阶互素的有限群的纯群论性质.特别地,得到了非线性不可约特征标次数的重数均小于2p的奇阶群G的分类结果.这里p为群阶|G|的最小素因子.
The classification of finite groups in which the multiplicity of each nonlinear irreducible character degree is equal to one is well known. For a solvable group G, we consider a more general case in this paper, namely the multiplicities of nonlinear irreducible character degrees of G are always co-prime to the group order |G|. In particular, we classify finite groups G of odd order in which the multiplicities of nonlinear irreducible character degrees are all less than 2p, where p is the minimal prune divisor of the group order |G|.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2004年第1期125-130,共6页
Acta Mathematica Sinica:Chinese Series
基金
江苏省高校自然科学研究计划资助项目(03KJBll0002)
关键词
特征标
特征标次数的重数
可解群
Character
Multiplicity of character degree
Solvable group