期刊文献+

特征标次数的重数与可解群结构 被引量:1

Multiplicity of Character Degrees and the Structure of Solvable Groups
原文传递
导出
摘要 非线性不可约特征标次数的重数全部为1的有限群的分类是熟知的.对可解群,本文讨论更一般的,即非线性不可约特征标次数的重数都与群阶互素的有限群的纯群论性质.特别地,得到了非线性不可约特征标次数的重数均小于2p的奇阶群G的分类结果.这里p为群阶|G|的最小素因子. The classification of finite groups in which the multiplicity of each nonlinear irreducible character degree is equal to one is well known. For a solvable group G, we consider a more general case in this paper, namely the multiplicities of nonlinear irreducible character degrees of G are always co-prime to the group order |G|. In particular, we classify finite groups G of odd order in which the multiplicities of nonlinear irreducible character degrees are all less than 2p, where p is the minimal prune divisor of the group order |G|.
作者 钱国华
机构地区 苏州大学数学系
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2004年第1期125-130,共6页 Acta Mathematica Sinica:Chinese Series
基金 江苏省高校自然科学研究计划资助项目(03KJBll0002)
关键词 特征标 特征标次数的重数 可解群 Character Multiplicity of character degree Solvable group
  • 相关文献

参考文献5

  • 1Isaacs I. M., Character theory of finite groups, New York: Academic Press, 1976, 28-201.
  • 2Berkovich Y., Chillag D., Herzog M., Finite groups in which the degrees of nonlinear irreducible characters are distinct, Proc. Amer. Math. Soc., 1992, 115(4): 955-959.
  • 3Berkovich Y., Finite solvable groups in which only two nonlinear irreducible characters having equal degrees,J. Algebra, 1996, 184: 586-603.
  • 4Berkovich Y., Isaacs I. M., Kazarin L., Groups with distinct monolithic character degrees, J. Algebra, 1999,216: 448-480.
  • 5kazarin L., Berkovich Y., On thompson's theorem, J. Algebra, 1999, 220: 574-590.

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部