摘要
一个2n阶偶图G,如果有长为2R(2≤R≤n)的圈,则称其为泛偶圈。本文证明了如下结果:设G=(X,Y,E)是一个2n阶连通偶图。如果G中任意一对距离为3的顶点的次数之和不小于n+1,则G是泛偶圈的,除非是长为6的圈。
A bipartite graph G is called bipancyclic if it contains the cycles with length 4,6,8…,2n, where 2n is the order of G.In this paper,we get a new kind of bipancyclic graphs as follows:let G= (X,Y,E)be a connected bipartite graph with 2n vertices.If|X|=|Y|=n and G satisfies the distance conditions: then,G is bipancyclic graph,unless G=C