期刊文献+

基于改进BP神经网络的车轮定位参数动态测量 被引量:3

Modified BP ANN Based Dynamic Measurement of Wheel Alignment Parameters
下载PDF
导出
摘要 结合人工神经网络(ANN)技术,提出了基于改进的BP神经网络的车轮定位参数动态测量方法,编制了相应的程序,并进行了试验验证。结果表明,通过将车辆前进时的侧滑量作为已训练好改进BP神经网络的输入,根据网络的输出值可以有效地识别出车辆行驶时的车轮外倾角与前束值,从而实现在侧滑试验台上对车轮外倾角和前束值的测定,并依据测定结果有效地指导检修人员进行车轮外倾角与前束值的调整。 Combined with the artificial neural network(ANN)technology,the modified BP neural network based dy-namic measurement method of wheel alignment parameters are brought forward,the corresponding software is pro grammed and test verification is carried out.It is shown that when the side slipping values of the running vehicle are input into the trained BP neural network,cambers and toe-ins of the running vehicle are obtained from its outputs,that is,it is feasible to measure wheel camber and toe-in on side-slipping test rigs.The measured results can be used to guide work ers to effec-tively adjust cambers and toe-ins.
机构地区 东南大学
出处 《汽车技术》 北大核心 2003年第12期31-33,共3页 Automobile Technology
关键词 人工神经网络技术 车轮定位 参数测量 改进BP算法 汽车实验 外倾角 前束值 Wheel alignment ,Parameter,Dynamic test,Modified BP algorithm method
  • 相关文献

参考文献2

二级参考文献4

共引文献53

同被引文献24

  • 1张剑湖,叶峰.人工神经网络的模型、特征及其发展方向[J].现代电子技术,2004,27(12):57-60. 被引量:14
  • 2杨元喜.动态Kalman滤波模型误差的影响[J].测绘科学,2006,31(1):17-18. 被引量:43
  • 3Rogers C A. Intelligent materials systems -the dawn of a new materials age[J]. Journal of Intelligent Material Systems and Structure, 1993,4(1) : 1-8.
  • 4Vapnik V N. Estimation of Dependences Based on Empirical Data[M].Berlin: Spring-Verlag, 1982.
  • 5Marcel O E, Johan A KS, Bart DM. Least squares support vector machines and primal space estimation [C]//Proceedings of the 42rd IEEE Conference on Decision and Control, Maui, Hawaii USA, 2003.
  • 6Suykens J A K. Nonlinear modeling and support vector maehines[C]//IEEE Instrumentation and Measurement, 2001 . 120-123.
  • 7Shawe-Taylor J, Cristianini N. Kernel Methods for Pattern Analysis [M]. Cambridge University Press, 2004.
  • 8Samanta B, A1-Balushi K R, A1-Araimi S A. Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection[J]. Engi- neering Application of Artificial Intelligence, 2003,16 : 657-665.
  • 9Suykens J A K, Gestel Tvan, Brabanter J, et al. Least Squares Support Vector Machines[M]. Singapore: World Scientific Pub. Co. Inc. , 2002.
  • 10Cambell C. Kernel methods:a survey of current techniques[J]. Neurocomputing, 2002,48:63-84.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部