期刊文献+

库仑耦合效应对类太阳恒星模型的影响 被引量:1

Influences of Coulomb Coupling Effects to Solar-like Stellar Models
下载PDF
导出
摘要 物态方程一直是恒星模型理论研究中的最重要的物理方程之一。对于日震学等高精度要求的研究领域来讲,只包含理想效应的物态方程并不能满足研究需要,而要更细致、包含非理想效应的物态方程对系统作更精确和完善的描述。在弱耦合及弱电子简并的系统中,为研究各种带电粒子之间的库仑耦合效应,以化学图像为基础,分别用具有硬核改正的Debye-Hckel扩展理论来处理离子-电子作用、多体作用的经典点粒子相互作用理论描述离子-离子作用和量子统计方法处理电子-电子作用,并把此3种作用对物态方程自由能的贡献用半解析的数学公式给出。为适应日震学研究的要求,特别选取一组类太阳的恒星模型作为研究对象,从实际模型计算出发,对库仑耦合中的各种效应进行了比较分析,讨论并检验了所作的理论改进。 As one of the most important physical equation in the study of astrophysics, especially that of stellar modeling theory, equation of state with ideal effects only cannot meet such high-quality circumstances as helioseismology researches, and more precise one with non-ideal effects is in great need to describe the system much more detailed and complete. For a weakly coupled and weakly degenerated plasma system, the Coulomb interactions between charged particles are treated respectively from the so-called chemical picture as: The ion-electron interactions are described by the extended Debye-Huckel theory with hard-core corrections, ion-ion interactions are treated by N-body theory of classical point particles, and electron-electron interactions are described by quantum statistics methods. All the above effects are proposed mathematically by a set of semi-analytic formula to describe their influences to the total free energy. For helioseismological studies, a group of solar-like star models are chosen out to be studied and be calculated. Results of comparisons and analyses for all the three forms of Coulomb interactions are given out, and discussions and verifications are finally made according to such theoretical corrections.
作者 赵承均
出处 《天文学报》 CSCD 北大核心 2003年第3期256-269,共14页 Acta Astronomica Sinica
关键词 库仑耦合效应 类太阳恒星模型 恒星物理学 物态方程 非理想效应 stellar physics, equation of state, non-ideal effects, coulomb coupling interac-tions
  • 相关文献

参考文献17

  • 1[1]Harris G M. J Chem Phys. 1959, 31:1211
  • 2[2]Mihalas D, Hummer D G. ApJ, 1988, 331:794-814
  • 3[3]Mihalas D, Dappen W, Hummer D G. Ap J, 1988a, 331:815-825
  • 4[4]Dappen W, Mihalas D, Hummer D G, et al. Ap J, 1988b, 332:261-270
  • 5[5]Rogers F J. Ap J, 1986, 310:723
  • 6[6]Rogers F J, Swenson F J, Iglesias C A. ApJ, 1996, 456:902
  • 7[7]Tanaka S, Mitake S, Yan X Z, Ichim aru S. Rev A Phys. 1985, 32:1779
  • 8[8]Tanaka S, Ichim aru S. Rev B Phys. 1985, 39:1036
  • 9[9]Singwi K S, Tosi M P, Land R H, et al. Rev Phys. 1968, 176:589
  • 10[10]Bi S L, Di Mauro M P, Christensen-Dalsgaard. A&A, 2000, 364:157-164

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部