期刊文献+

固结问题的非线性局部点插值法解研究

Study on calculation of consolidation problem using nonlinear local point interpolation method
下载PDF
导出
摘要 局部点插值法是一种新型的无单元法,该法构造出的位移和孔隙水压力的形函数具有d函数特性,所以,本质边界条件很易处理。首先,介绍了基本理论,给出求解比奥固结问题的主要公式。其次,对复层软基堆载引起的固结和沉降问题作了计算,其中节点采用均匀分布方式,且为了考虑土体的非线性特性计算程序中耦合了邓肯-张模型。最后,把计算值与有限元法、一维固结理论计算结果进行了对比。结果表明该法精度高,令人满意。 Local point interpolation method is a new type meshless method. Because its shape functions for displacements and pore water pressures possess delta function property, the essential boundary conditions can be imposed easily. After the basic theory is introduced and the main equations for solving Biots consolidation problem are developed, the consolidation and settlement of one multi-layer soft ground subjected to heaped loadings are calculated with it. Furthermore, the famous Duncan-Chang model is adopted in consideration of nonlinear properties of soil, and the uniform point distribution mode is selected. At last, comparisons with the results of one-dimensional consolidation method and FEM show that this method is more accurate and satisfying.
出处 《岩土力学》 EI CAS CSCD 北大核心 2004年第2期199-202,共4页 Rock and Soil Mechanics
关键词 局部点插值法 邓肯-张模型 固结和沉降 一维固结理论 local point interpolation method Duncan-Chang model consolidation and settlement 1-D consolidation theory
  • 相关文献

参考文献11

  • 1钱家欢 殷宗泽.土工原理和计算[M].北京:中国水利水电出版社,1995.20-200.
  • 2Nayroles B, Touzot G. Generalizing the finite clement method: diffuse approximation and diffuse elements [J].Computational Mechanics, 1992, (10): 307-318.
  • 3Belytschko T, Lu Y Y. Element free galeddn method [J].International Journal for Numerical Method in Engineering, 1994, 37: 229-256.
  • 4Liu W K, Jun S. Reproducing kernel particle methods [J].International Journal for Numerical Methods in Fluids,1995, 20:1 081-1 106.
  • 5Gu Y T, Liu G R A local point interpolation method for stress analysis of two-dimensional solids [J]. Structural Engineering and Meehanics, 2001, (2): 221-236.
  • 6Gu Y T, Liu G R. A local point interpolation melhod for static and dynmnic analysis of thin beams [J]. Computer Methods in Applied Mechanics and Engineering, 2001,190:5 515-5 528.
  • 7Liu G R, GUY T. A point interpolation method for two-dimensional solids [J]. International Journal for Numerical Method in Engineering, 2001, 20: 937-951.
  • 8Wang J G, Gu Y T, Liu G R A point interpolation method or simulating dissipation process of consolidation [J].Computer Methods in Applied Mechanics and Engineering, 2001, 19: 5 907-5 922.
  • 9Karim M R, Wang J G. Element free galerkin method: A meshless discretization approach in consolidation analysis.Computational Mechanics[J]. Proceedings, 2001, 953-958.
  • 10Zienkiewicz O C, Taylor R L. The Feinite Element Method[M]. New York: McGraw-Hill, 1991, (2):111-200.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部