期刊文献+

ASYMPTOTICS OF INITIAL BOUNDARY VALUE PROBLEMS OF BIPOLAR HYDRODYNAMIC MODEL FOR SEMICONDUCTORS

原文传递
导出
摘要 In this paper, we study the asymptotic behavior of the solutions to the bipolar hydrodynamic model with Dirichlet boundary conditions. It is shown that the initial boundary problem of the model admits a global smooth solution which decays to the steady state exponentially fast.
作者 JuQiangchang
出处 《Journal of Partial Differential Equations》 2004年第1期57-70,共14页 偏微分方程(英文版)
  • 相关文献

参考文献8

  • 1Fang, W and Ito, K , Weak solution to a one dimensional hydrodynamic model of two carrier types for semiconductors, Nonlinear Anal, 28(1997), 947-963.
  • 2Natalinil-R The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J Math.Anal.Appl., 198(1996), 262-281.
  • 3Hsiao, L & Zhang, K The Global weak solution and relaxation limits of the initial-boundary problem to the bipolar hydrodynamic model for semiconductors, Math.Modling and Methods in Appl. sci., 10(2000), 1331-1361.
  • 4Zhu, C & Hattori H Stability of steady solutions for an isentropic hydrodynamic model of semiconductors of two species, J Diff. Eqns., 166(2000), 1-32.
  • 5Li, H, Markowich, P & Mei, M Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors, Proc. Roy. Soc. Edinburgh Sect., A 2 132(2002), 359-378.
  • 6Majda, A, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, Berlin/New York, 1984.
  • 7Hsiao, L & Luo, T, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J Diff. Eqns., 125(1996), 329-365.
  • 8Hsiao, L & Yang, T Asymptotics of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J Diff. Eqns., 170(2001), 472-493.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部