期刊文献+

EXISTENCE OF PERIODIC SOLUTIONS FOR 3-D COMPLEX GINZBERG-LANDAU EQUATION

原文传递
导出
摘要 In this paper, the authors consider complex Ginzburg-Landau equation(CGL) in three spatial dimensions ut=ρu+(1+iγ)△u-(1+iμ)|u|^2σu+f,where u is an unknown complex-value function defined in 3+ 1 dimensional space-time R^3+1,△ is a Laplacian in R^3, ρ > 0, γ μ are real parameters, Ω∈R^3 is a bounded domain. By using the method of Galeerkin and Faedo-Schauder fix point theorem we prove the existence of approximate solution uN of the problem. By establishing the uniform boundedness of the norm ||uN|| and the standard compactness arguments, the convergence of the approximate solutions is considered. Moreover, the existence of the periodic solution is obtained.
出处 《Journal of Partial Differential Equations》 2004年第1期12-28,共17页 偏微分方程(英文版)
  • 相关文献

参考文献16

  • 1Ghidaglia J-M. and Heron B., Dimension of the attractor associated to the Ginzburg-Landau equation, Phys., 28D(1987), 282-304.
  • 2Doering C, Gibbon J D, holm D. and Nicolaenko B, Low-dimensional behavior in the complex Ginzburg-Landau equation, Nonlinearity, 1 (1988), 279-309.
  • 3Promislow K, Induced trajectories and approximate inertial manifolds for the Ginzburg-Landau partial equation, Physica D, 41(1990), 232-252.
  • 4Bartuccelli M, Constantin P, Doering C, Gibbon J D and M gisself quot; alt, On the possibility of soft and hard turbulence in the complex Ginzburg-Landan equation, Physica D, 44(1990), 421-444.
  • 5Bu C, On the Cauchy problem for the 1+2 complex Ginzburg-Landau equation, J Austral Math. Soc., Set. B, 36(1994), 313-324.
  • 6Doering C R , Gibbon J D and Levermore C D , Weak and strong solutions of the complex Ginzburg-Landau equation, Phys, 71D(1994), 285-318.
  • 7Mielke A, The complex Ginzburg-Landan equation on large and unbounded domains:sharper bounds and attractors, Nonlinearity, 10(1997), 199-222.
  • 8Temam R, Infinite Dimensional Dynamic Systems in Mechanics and Physics, Springer,New York, 1988.
  • 9Hisako Kato, Existence of periodic solution of the Navier-Stokes equations, J Math. Anal.Appl, 208(1997), 141-157.
  • 10Yoshizwa T, Stability, Theory and the Existence of Periodic Solutions and Almost Periodic Solutions, Spring-verlag New York-Heidelberg.Berlin, 1975.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部