摘要
In this paper, the authors consider complex Ginzburg-Landau equation(CGL) in three spatial dimensions ut=ρu+(1+iγ)△u-(1+iμ)|u|^2σu+f,where u is an unknown complex-value function defined in 3+ 1 dimensional space-time R^3+1,△ is a Laplacian in R^3, ρ > 0, γ μ are real parameters, Ω∈R^3 is a bounded domain. By using the method of Galeerkin and Faedo-Schauder fix point theorem we prove the existence of approximate solution uN of the problem. By establishing the uniform boundedness of the norm ||uN|| and the standard compactness arguments, the convergence of the approximate solutions is considered. Moreover, the existence of the periodic solution is obtained.