摘要
发电经济调度问题是一个经典混合整数规划问题,然而用拉格朗日松弛法得到的对偶解对原问题通常是不可行的,要获得可行解必须先得到一种可行的机组组合。本文分析了现有可行化条件中存在的问题,提出了一个易于检验的可行化条件,并证明它是充分必要的。随后,介绍了获得可行解的方法。
Power generation optimal scheduling is a classical complex mixed integer programming problem. Although Lagrangian relaxation is one of the most successful method, the obtained schedules in the dual solution by Lagrangian relaxation are generally infeasible for original problem, to obtain feasible solution firstly a feasible commitment should be achieved, on this basis only by adjusting the outputs of the units being operated all of the systematic constraints can be satisfied. Here, at first the problems in existing feasible conditions are analyzed and a feasible condition which is easy to examine is put forward and it is proved that this condition is necessary and sufficient, then the systematic approach to obtain feasible solution is presented.
出处
《电网技术》
EI
CSCD
北大核心
2004年第1期1-4,共4页
Power System Technology
基金
国家杰出青年基金资助项目(6970025)
国家自然科学基金重点资助项目(59937150)
国家863计划资助项目(2001AA413910)。
关键词
电力系统
发电经济调度
混合整数规划
可行化
Constraint theory
Integer programming
Optimization
Problem solving
Scheduling