期刊文献+

肺气管树分形结构的数学描述 被引量:3

Mathematical Description of Fractal Structure of Bronchial Tree
下载PDF
导出
摘要 根据人体气管树内部复杂的自相似的结构,收集气管树的解剖学资料,在二维平面上建立了人体气管树完全二叉分支的分形结构数学模型。拟合出右肺的外形边界曲线,根据进出气体以最小能量损失到达分布目的的思想,借鉴血管分支形态的优化分析对前几级支气管的几何形态进行数学模拟,在此基础上建立边界控制气管树分叉控制概率模型,模拟了人体右肺气管树的分形结构。计算结果表明,该模型能很好的模拟支气管形态优化及管径确定,并能对复杂的气管树几何形态进行描述。 Based on the understanding of the complicated anatomical structure of human bronchial tree, the length ratio of the immediate bronchia, the change of bronchus diameters, and the bifurcation angles were analyzed. A bifurcation mathematical model that is used to simulate the fractal structure of human right bronchial tree was proposed using computer graphic method. According to the minimum energy loss principle and the optimal analysis of blood vessel bifurcation, The bifurcation angles and the diameters of the first three graded bifurcations of bronchia was determined. The bronchial three of right lung was depicted figuratively. The calculation results showed that the model could simulate the bronchial optimal structure and determine the diameters well, and it can describe the complex geometrical structure of human bronchial tree. 
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 2003年第4期64-66,共3页 Journal of Sichuan University (Engineering Science Edition)
关键词 气管树 分形结构 优化 bronchial tree fractal structure optimal analysis
  • 相关文献

同被引文献19

  • 1黄秀义,谭小苹,裴觉民.右肺支气管树的三维分形模拟[J].生物医学工程学杂志,2004,21(3):377-380. 被引量:2
  • 2吴志学.机械零件形状优化设计的仿生学方法[J].中国机械工程,2005,16(10):869-873. 被引量:9
  • 3董涛,陈运生,杨朝初,毕勤成,吴会龙,郑国平.仿蜂巢分形微管道网络中的流动与换热[J].化工学报,2005,56(9):1618-1625. 被引量:19
  • 4张楚华,闻苏平,刘阳.人体呼吸道的二级及三级支气管内吸气流动的数值研究[J].生物医学工程学杂志,2006,23(4):748-752. 被引量:5
  • 5SCHMIDT A, ZIDOWIZ S. A digital reference model of the human bronchial tree [J]. Computerized Medicinal Imaging and Graphics, 2004, 28(4): 203-211
  • 6ZHANG Z, KLEINSTREUER C. Airflow structures and nano-particle deposition in a human upper airway model [J]. Journal of Computational Physics, 2004, 198 (1) : 178-210
  • 7MAUROY B , FILOCHE M. An optimal bronchial tree may be dangerous [J]. Nature, 2004, 427(6975) : 633-637
  • 8GHODOOSSI L. Thermal and hydrodynamic analysis of a fractal microchannel network [J]. Energy Conversion & Management, 2005, 46(5) :771-788
  • 9WEST G B, BROWN J H, ENQUIST B J. A general model for the origin of allometric scaling laws in biology [J]. Science, 1997, 276(5309): 122-126
  • 10TURCOTTE D L, PELLETIER J D, NEWMAN W I. Networks with side branching in biology [J]. Journal of Theoretical Biology, 1998, 193(4): 577-592

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部