期刊文献+

车辆自主导航中的道路边界识别算法 被引量:10

Road Edge Detection Technique for Auto-navigation of Vehicle
下载PDF
导出
摘要 道路边界识别是车辆基于道路区域或边界信息自动导航的首要问题 .根据驾驶员视觉处理经验和车辆运动轨迹方程 ,总结出道路边界识别的先验知识与预测知识 ,在所选取的二次曲线道路形状模型基础上 ,分别利用边界识别算法和跟踪识别算法得到车辆起步和稳定行驶过程中的实时道路边界信息 ,为车辆控制器计算出位置偏差和方向偏差两个参数 ,以实现车辆基于前向单目视觉的自主导航 .通过对实际路面试验结果的分析 。 Road edge detection and tracking is a key technique for auto navigation of vehicle based on the information of road edge or road region. This paper presents pre knowledge based on human visual experience and prediction knowledge based on the kinematics equation of vehicle. With the selected road shape model, road edge detection and following for intelligent vehicle was executed by the combination of two modules. The road edge detection module is used to get the information about road edge when vehicle being started with the pre knowledge, while the edge following module is started to predict the position of road edge when vehicle running stably with the prediction knowledge, then two control equation parameters location and orientation deviation are calculated for auto navigation of vehicle based on preview unique visual. In the concluding, this paper analyzed the result of the real road tracking experimentation, which proved the effective and precise of the presented method.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2003年第6期674-678,共5页 Journal of Image and Graphics
基金 国家自然科学基金项目 ( 5 9875 0 3 2 ) 国家 973项目 ( G19980 3 0 40 8)
关键词 道路边界识别 智能交通系统 传感器 汽车 自动导航系统 Pattern recognition, Machine vision, Auto navigation, Edge detection, Edge following
  • 相关文献

参考文献5

  • 1[1]Dellaert F, Pomerlau D, Thorpe C. Model-based car tracking integrated with a road-follower [A]. In: Proceedings of 1998 IEEE International Conference on Robotics and Automation[C],Leuven, Belgium, 1998,3:1889~1894.
  • 2[2]Gregor R, Lutzeler M, Pellkofer M et al. EMS-Vision: a perceptual system for autonomous vehicles [ J ]. IEEE Transactions on Intelligent Transportation Systems. 2002,3(1) :48~59.
  • 3[3]Bellutta P, Manduchi R, Matthies L et al. Terrain perception for DEMO Ⅲ [A]. In: Proceedings of the IEEE Intelligent Vehicles Symposium[C]. Dearborn, MI,USA, 2000: 326 ~ 331.
  • 4[4]Sandra Denasi, Giorgio Quaglia. Early obstacle detection using region segmentation and model based edge grouping [A]. In:Proceedings of IEEE International Conference on Intelligent Vehicles [C], Stuttgart, Germany, 1998: 257~ 262.
  • 5[5]Shin Kato, Kohji Tomita et al. Lane departure detection with an onboard vision system [ A ]. In: Proceedings of IEEE International Conference on Intelligent Vehicles[C], Stuttgart,Germany, 1998: 74~80.

同被引文献84

引证文献10

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部