摘要
以边界元法按位移解平面应力问题方法为基础 ,取边界单元的位移和表面力为未知参量 ,区域上的位移方程为观测方程 ,区域上测得的位移为观测值 ,按最小二乘原理 ,先解出未知参量 ,然后按位移方程计算区域内的位移 ,按应力方程计算区域内的应力场。在此基础上 ,应用非连续形变分析的基本原理 ,讨论了保证非连续块体系统运动的合理性应附加的应力和运动学约束条件及其表达形式 ,以及判定块体间相互接触关系状况的方法 。
On the basis of BEM (boundary element method), DDA (discontinuous deformation analysis) and Least Square Principle, a method for determining relative movements on boundaries, displacements and stresses in blocks of a multi-block system is presented, the stress and kinematic constraints required for the movement reasonability of the block system are discussed, and the judgment of the contact status between blocks is also investigated in detail, that ensures whether stress and kinematic constraints are necessary. In one word, an inversion method of DDA with BEM is provided, that would be a more effective numeric computing method for larger-scale crustal deformation analysis.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2003年第3期345-350,共6页
Geomatics and Information Science of Wuhan University
基金
~~
关键词
边界元
非连续形变
地壳形变
最小二乘法
boundary element method
discontinuous deformation analysis
crustal deformation