期刊文献+

钴酞菁分子结中电子输运性质的理论研究 被引量:1

Electron transmission of cobalt phthalocyanine(CoPc) junction
下载PDF
导出
摘要 利用半经验ExtendedH櫣ckel分子轨道方法和格林函数方法来研究钴酞菁 (CoPc)分子结的电子输运性质。计算结果表明分子结 (器件 )电子输运性质对分子本身的电子结构、电极不同晶向表面、分子与电极间耦合强度、其界面的几何构型 ,对电极表面接触分子的末端原子的种类等诸多方面都有不同程度的依赖关系。对于CoPc这类弱耦合分子结而言 ,可以通过测量其I V曲线来研究分子本身的电子结构。本文的理论方法不仅可以用来描述分子器件的电子输运行为 ,还能用来研究扫描探针显微镜体系的伏安特性和扫描隧道谱。 The transmission functions of cobalt phthalocyanine (CoPc) molecules contacted between Au electrode as a function of the incoming electron energy were calculated using Extended Hückel molecular orbital methods combining with Green's function technique. The main features of transmission function of CoPc molecule absorbed on gold surface are very similar to each other, special for peak position. The transmission will change drastically via modulating the coupling strength or the terminal molecular atom metal(d Au H ) bond length, and also is sensitive to local geometry interface. The profile of transmission of CoPc molecule with or without four end hydrogen atoms are almost same, but a Fermi level shift about 1 2eV. Our results show that one can measure the conductance properties to study the energy levels of this kind of molecules.
出处 《电子显微学报》 CAS CSCD 北大核心 2003年第3期194-198,共5页 Journal of Chinese Electron Microscopy Society
基金 国家自然科学基金资助项目 (No .10 0 740 5 8 2 0 0 2 5 3 0 9) 国家重点基础研究发展规划项目基金 (No .G19990 75 3 0 5 )
关键词 钴酞菁 分子结 分子器件 电子输运 扫描探针显微镜 扫描隧道谱 伏安特性 electron transmission molecular device metal phthalocyanine scanning tunneling microscope
  • 相关文献

参考文献16

  • 1[1]Aviram A,Ratner M,ed. Molecular Electronics:Science and Technology[M]. New York:New York Academy of Science,1998.
  • 2[2]Joachim C,Gimzewski J K,Schlitttler R R,Chavy C. Phys Rev Lett,1995,74:2102.
  • 3[3]Bumm L A,Arnold J J,Cygan M T, et al. Science, 1996,271:1705.
  • 4[4]Porath D,Bezryadin A,de Vries S,Dekker C. Nature, 2000,403:635.
  • 5[5]Reed M A,Zhou C, Muller C J,Burgin T P, Tour J M. Science, 1997,278:252.
  • 6[6]Chen J,Reed M A,Rawlett A M,Tour J M. Science, 1999,286:1550.
  • 7[7]Chen J,Wang W,Reed M A, et al. Appl Phys Lett,2000,77:1224.
  • 8[8]Schon J H,Meng H,Bao Z. Science, 2001,294:2138.
  • 9[9]Park J,Pasupathy A N,Goldsmith J I, et al. Nature, 2002,417:722.
  • 10[11]Tian W,Datta S, et al. J Chem Phys, 1998,109:2874.

同被引文献39

  • 1薛其坤.扫描隧道显微学在薄膜量子生长中的应用[J].电子显微学报,2005,24(4):243-243. 被引量:1
  • 2杨金龙,李群祥,侯建国,朱清时.表面单分子的表征和操纵[J].电子显微学报,2006,25(4):279-286. 被引量:2
  • 3李渊,钱建强,徐平,李亭,蔡微,姚骏恩.原子力显微镜相位成像模式的设计及研究[J].电子显微学报,2006,25(4):341-344. 被引量:12
  • 4吴志华,张晓东,张雪花,王春梅,孙洁林,李刚,孙洋,董亚明,胡钧.纳米操纵辅助的原子力显微镜原位定位观察[J].电子显微学报,2006,25(4):356-359. 被引量:1
  • 5Degen C L,Poggio M,Mamin H J,et al.Nanoscale magnetic resonance imaging[J].PA NS,2009,106:1313-1317.
  • 6Kuehn S,Hickman S A,Marohn J A.Advances in mechanical detection of magnetic resonance[J].J Chem Phys,2008,128:052208.
  • 7Sidles J A,Garbini J L,Bruland K J,et al.Magnetic resonance force microscopy[J].Rev Mod Phys,1995,67:249-265.
  • 8Zang K,Guo Q Y,Fu H.The initial stage of the dissociative adsorption and the surface electronic state evolution of NH3 on Si(111)-(7 ×7)[J].J Phys Condensed Matter,2010,22:085002.
  • 9Sidles J A.Noninductive detection of single-proton magnetic resonance[J].Appl Phys Lett,1991,58:2854-2856.
  • 10Züger O,Rugar D.First images from a magnetic resonance force microscope[J].Appl Phys Lett,1993,63:2496-2498.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部