期刊文献+

体心立方多晶膜中应变能密度的各向异性分析 被引量:1

Anisotropy analysis of strain-energy density in bcc-polycrystalline films
原文传递
导出
摘要 根据弹性理论和多晶膜的屈服强度公式 ,计算了附着在基体上体心立方多晶薄膜中不同取向晶粒中的应变能密度 .结果表明 :1)在屈服之前 ,对Fe和Ta两种薄膜 ,4个最小的应变能密度对应的晶粒取向依次为 (10 0 ) ,(5 10 ) ,(4 10 )和 (5 11) ;对Cr,Mo ,Nb和V四种薄膜 ,4个最小的应变能密度对应的晶粒取向依次为 (111) ,(332 ) ,(32 2 )和(2 2 1) ;对W膜 ,应变能密度与晶粒取向无关 .2 )在屈服的体心立方多晶膜中 ,4个最小的应变能密度对应的晶粒取向依次为 (10 0 ) ,(111) ,(110 )和 (4 11) .从应变能的最小化考虑 ,这些取向的晶粒将依次优先生长 . Based on elastic theory and yield strength formula of polycrystalline films, the strain-energy densities in differently oriented grains have been calculated for a bcc-polycrystalline film on a substrate. The results show that, (1) prior to yielding, the Fe and Ta are basically similar and with (100), (510), (410) and (511) oriented grains having the lowest strain-energy densities. For Cr, Mo, Nb and V, however, the four lowest strain-energy densities correspond to the grains with (111), (332), (322) and (211) planes oriented parallel to the film surface. For isotropic W, the strain energy density is independent of the grain orientation. (2) In all of yielded bcc-polycrystalline films, the four lowest strain energy densities correspond to the grains with (100), (111), (110) and (411) planes oriented parallel to the film surface. Considering strain energy minimization, we predicate that the grains with these orientations should be favorable in crystal growth successively.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2004年第1期176-181,共6页 Acta Physica Sinica
基金 国家自然科学基金 (批准号 :5 0 2 710 3 8 5 993 10 10 )资助的课题~~
关键词 体心立方多晶膜 晶粒取向 应变能密度 各向异性分析 屈服强度 晶粒取向 应变能 bcc-polycrystalline films, grain orientation, strain-energy density, texture
  • 相关文献

参考文献2

二级参考文献47

  • 1Flinn P A 1991 J. Mater. Res. 6 1498.
  • 2Vinci R P, Marieb T N and Bravman J C 1993 Mar. Res. Soc.Symp. Proc. 308 297.
  • 3Bφrgesen P, Lee J K, Gleixner R and Li C Y 1992 Appl. Phys.Lett. 60 1706.
  • 4Chandhari P 1974 J. Appl. Phys. 45 4339.
  • 5Gardner D S and Flinn P A 1988 IEEE Trans. Electron Devices 35 2160.
  • 6Kamminga J D, Keijser T H, Delhez R and Mittemeijer E J 1998 Thin Solid Films 317 169.
  • 7Hudson C and Somekh R E 1996 J. Vac. Sci. Technol. A 142169.
  • 8Nix W D and Clemens B M 1999 J. Mater. Res. 14 3467.
  • 9Roll K 1976 J. Appl. Phys. 47 3224.
  • 10Niwa H, Yagi H, Tsuchikawa H and Kato M 1990 J. Appl. Phys.68 328.

共引文献14

同被引文献17

  • 1Samanta S K, Yoo W J, Samudra G, Tok E S, Bera L K, Balasubramanian N. Appl Phys Lett, 2005; 87:113110
  • 2Shen Y G, Mai Y W, McBride W E, McKenzie D R, Zhang Q C. Appl Phys Left, 1999; 75:2211
  • 3Haghiri-Gosnet A M, Ladan F R, Mayettx C, Launois H. J Vac Sci Technol, 1989; 7A: 2663
  • 4Rossnagel S M, Noyan I C, Cabral C. J Vac Sci Technol, 2002; 20B: 2047
  • 5Kuroda R, Liu Z X, Fukuzawa Y, Suzuki Y, Osamura M, Wang S N, Naotaka O, Teruhisa O, Takahiro M, Yasushi H, Yasuhiko N, Hisao T, Yunosuke M. Thin Solid Films, 2004; 461:34
  • 6Sadowski J T, Nagao T, Yaginuma S, Fujikawa Y, Al-Mahboob A, Nakajima K, Sakurai T, Thayer G E, Tromp R M. Appl Phys Left, 2005; 86:073109
  • 7Tu J P, Jiang C X, Guo S Y, Fu M F. Mater Lett, 2004; 58:1646
  • 8Badawi K F, Villain P, Goudeau P, Renault P O. Appl Phys Lett, 2002; 80:4705
  • 9Villain P, Goudeau P, Renault P O, Badawi K F. Appl Phys Lett, 2002; 81:4365
  • 10Kim H K, Huh S H, Park J W, Jeong J W, Lee G H. Chem Phys Lett, 2002; 354:165

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部