摘要
以蒙特卡罗模拟方法对自对耦分布二维随机链q态Potts模型的短时临界行为进行了数值研究 .利用初始非平衡演化阶段存在的普适幂指数和有限体积标度行为 ,数值模拟了在不同形式随机分布时q=3和q =8态Potts模型磁临界指数 η和动力学临界指数z.计算结果发现 η不依赖于自对偶无序分布的具体形式 ,从而以数值方法给出了一个关于淬火掺杂自旋系统的临界普适行为的验证 .
In this paper we present our numerical study on short-time critical dynamics for the q -state random-bond Potts model with self-dual quenched disorders. By exploring the universal power-law scaling behavior, the results of magnetic exponent η and dynamic exponent z are estimated for the q=3 and q=8 cases with two specific disorder distribution functions. Our Monte Carlo simulations show evidence that the results of magnetic exponent η are independent of distribution forms, which verifies the existence of universality for the general quenched random-bond models numerically.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2004年第1期265-271,共7页
Acta Physica Sinica
基金
国家自然科学基金 (批准号 :10 0 740 5 5 )
教育部博士点基金资助的课题~~