期刊文献+

基于改进的NSGA-Ⅱ算法的区域覆盖卫星星座优化 被引量:6

OPTIMIZATION OF REGIONAL COVERAGE SATELLITE CONSTELLAION BY IMPROVED NSGA-Ⅱ ALGORITHM
下载PDF
导出
摘要 对基于Pareto最优概念的非劣性分层遗传算法(NSGA-Ⅱ)进行了改进,与区域覆盖卫星星座的多目标优化设计相结合,提出基于改进的NSGA-Ⅱ算法的区域覆盖卫星星座优化设计方法,并利用多属性决策中的字典序法,根据目标的重要程度,在得到的Pareto解中进行选择.最后,利用STK和Mat1ab工具对遥感卫星星座进行了仿真,仿真结果表明该算法可以找到多个Pareto解,避免了传统的多目标优化求解方法的权值选择问题,并且比简单遗传算法具有更好的灵活性,从而解决了多目标优化的星座设计问题. This paper presents a new method to design regional coverage satellite constellation, the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) based on Pareto optimal is improved and applied it to the optimization of regional coverage satellite constellation. The best solution,depending on the importance of different objects, is selected by a kind of multi attributes decision making method. Simulations on remote sensing satellite constellation are presented. The results of the simulation realized by STK and Matlab show that the algorithm can get a group of Pareto solutions. The algorithm presented in this paper can avoid selecting weights of multiple objects. On the other hand, compared with the simple genetic algorithm, our algorithm is more active. Thus the question of optimization of satellite constellation with multiple objectives can be solved.
出处 《空间科学学报》 CAS CSCD 北大核心 2004年第1期43-50,共8页 Chinese Journal of Space Science
基金 国防预研项目资助
关键词 NSGA-Ⅱ算法 卫星星座 区域覆盖 优化设计 非劣性分层遗传算法 Non-dominated Sorting genetic algorithm, Satellite constellation, Regional coverage, Optimization
  • 相关文献

参考文献6

  • 1王瑞,马兴瑞,李明.采用遗传算法进行区域覆盖卫星星座优化设计[J].宇航学报,2002,23(3):24-28. 被引量:41
  • 2Mason W J, Coverstone-Carroll V, Hartmann J. Optimal earth orbiting satellite constellation via a pareto genetic algorithm. 1998 AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 1998.169-177
  • 3Srinivas N, Deb K. Multiobjective optimization using nondominated sorting in genetic algorithm. Evol.Comp., 1995, 2(3):221-248
  • 4Deb K, Agrawal S, Pratap A, Meyarivan T. A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-Ⅱ, Parallel Problem Solving from Nature Ⅵ (PPSNVI),2000, 849-858
  • 5谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68. 被引量:59
  • 6Wei Shixiao, Zhou Xianzhong. Multi-Attributes Decision Making Theories and Methods and Applications in C3I. Beijing: National Defence Industry Press, 1998. in Chinese(魏世孝,周献中.多属性决策理论方法及其在C3I系统中的应用.北京:国防工业出版社,1998)

二级参考文献46

  • 1曾国强.采用遗传算法的星座间断全球覆盖最优化.现代小卫星技术(五)[M].,2001..
  • 2Pareto V. Cours d'economies politique, volume Ⅰ and Ⅱ [M]. F Rouge, Lausanne, 1896
  • 3Rosenberg R S. Simulation of genetic populations with biochemical properties [D]. University of Michigan,Ann Harbor, Michigan, 1967
  • 4Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms [A]. Genetic Algorithms and their Applications: Proceeding of the First International Conference on Genetic Algorithms [C], Lawrence Erlbaum, 1985. 93~ 100
  • 5Veldhuizen D A V, Lamont G B. Multiobjective evolutionary algorithm research: a history and analysis [R].TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright Patterson AFB, OH,USA, 1998
  • 6Fonseca C M, Fleming P J. Genetic algorithms for multiobjective optimization: formulation, discussion and generation [A]. Forrest S. Proceedings of the Fifth International Conference on Genetic Algorithms [C], SanMateo, California, University of Illinois at Urbana Champaign, Morgan Kaufman Publishers, 1993. 416~423
  • 7Srinivas N, Kalyanmoy D. Multiobjective optimization using nondominated sorting in genetic algorithms [J].Evolutionary Computation, 1994, 2(3): 221~248
  • 8Horn J, Nafpliotis N. Multiobjective optimization using the Riched Pareto genetic algorithm [R]. Technical Report IlliGAL Report 93005, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA, 1993
  • 9Lis J, Eiben A E. A multi-sexual genetic algorithm for multi-objective optimization [A]. Fukuda T, Furuhashi T. Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE [C], Nagoya, Japan,1996. 59~64
  • 10Darrell W. Evaluating evolutionary algorithms [J]. Artificial Intelligence, 1996, 85:245~276

共引文献98

同被引文献52

引证文献6

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部