期刊文献+

利用微生物混合培养技术生产聚羟基烷酸(PHA)研究 被引量:2

Production of Polyhydroxyalkanoates by a Mixed Culture
下载PDF
导出
摘要 研究了圆褐固氮菌 (Azotobacterchroococcum)突变株G 3与巨大芽孢杆菌 (Bacillusmega terium)G 6发酵生产聚羟基烷酸 (PHA)的人工可配伍性 ,确定了它们混合培养的适宜条件 ,先将G 3菌株发酵培养 2 4~ 2 8h后 ,再以 1 5 % (v v)接种量接入G 6菌株并同时补加 0 5 % (g g)蛋白胨 (FP)和 0 5 % (g g)NH4 NO3,继续混合培养 42~ 46h ,细胞干重达 32g L ,PHA含量为80 % ,再结合补料技术最终生物量可达 5 3g L ,PHA产生量达 42 4g L。糖对PHA的转化率为0 32。人工混合培养成功地解决了固氮菌发酵生产PHA过程中 ,发酵液粘度过高 ,传质较差 ,补糖总量上不去等技术问题。 The feasibility of using a mixed culture of A.chroococcum G-3 and B.megaterium G-6 in the production of polyhydroxyalkanoates has been studied. The optimal conditions for the mixed culture were established. After the G-3 strain was incubated alone for 24~28 hours, the broth was inoculated with 15% (v/v) of the G-6 culture. 0.5% peptone and 0.5% NH_4NO_3 were added to the mixture. The mixed culture was proceed to 42~46 h. Final dry cell weight was up to 32 g/L and the content of PHA was up to 80%. Combined with the nutrient supplement, the dry cell weight increased to 53 g/L and the content of PHA increased to 42g/L. The conversion of sucrose to PHA is 0.32.The mixed culture solved the problems caused by the increase in viscosity, poor mass transfer, low supplemental sucrose amounts.
出处 《微生物学报》 CAS CSCD 北大核心 2003年第6期799-804,共6页 Acta Microbiologica Sinica
基金 国家"8 63计划"新材料领域 (71 5 -0 0 4-0 1 60 ) 陕西教育厅重大产业化资助项目 (0 1ZC0 3 )~~
关键词 混合培养 生物量 PHA 圆褐固氮菌 巨大芽孢杆菌 聚羟基烷酸 Mixed culture,Biomass, PHA, Azotobacter chroococcum , Bacillus megaterium
  • 相关文献

参考文献2

  • 1北京大学生物系生物化学教研室.生物化学实验指导[M].,1979.22,43,87.
  • 2TD布洛克 微生物生物学翻译组译.微生物生物学[M].北京:人民教育出版社,1980.493.

共引文献58

同被引文献24

  • 1Dawes E,Senior P. The role and regulation of energy re-serve polymers in microorganisms[J].Advances in Micro-bial Physiology,1973.135-266.
  • 2Anderson A,Dawes E. Occurrence,metabolism,metabol-ic role,and industrial uses of bacterial polyhydroxyalkano-ates[J].Microbiological Reviews,1990.450-472.
  • 3Steinbtichel A. Perspectives for biotechnological production and utilization of biopolymers:metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example[J].Macromolecular Bioscience,2001.1-24.
  • 4Madison L,Huisman G. Metabolic engineering of poly,(3-hydroxyalkanoates):from DNA to plastic[J].Microbiolo-gy and Molecular Biology Reviews,1999.21-53.
  • 5Kusaka S,Abe H,Doi Y. Synthesis,structure and prop-erties of polyhydroxyalkanoates:biological polyesters[J].Progress in Polymer Science,2000.1503-1555.
  • 6Luzier W. Materials derived from biomass,biodegradable materials[J].Proceedings of the National Academy Sci-ences,1992.839-842.
  • 7Kim Y,Robert W. Polyesters from microorganisms[J].Advances in Biochemical Engineering/Biotechnology,2001.51-79.
  • 8Choi J,Lee S. Efficient and economical recovery of poly,(3-Hydroxybutyrate)from recombinant Escherichia coli by simple digestion with chemicals[J].Biotechnology and Bi-oengineering,1999.546-553.
  • 9Shang L,Jiang M,Chang H. Poly,(3-hydroxybutyrate)synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations[J].Biotechnology Letters,2003.1415-1419.
  • 10Shang L,Yim S,Park H. Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutropha for production of poly(hydroxybutyrate-co-hydroxyvalerate)with high 3-hydroxyvalerate fraction[J].Biotechnology Progress,2004.140-144.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部