期刊文献+

ANTI-PERIODIC SOLUTIONS FOR FIRST AND SECOND ORDER NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES

ANTI-PERIODIC SOLUTIONS FOR FIRST AND SECOND ORDER NONLINEAR EVOLUTION EQUATIONS IN BANACH SPACES
原文传递
导出
摘要 In this paper, a new existence theorem of anti-periodic solutions for a class ofstrongly nonlinear evolution equations in Banach spaces is presented. The equations contain nonlinear monotone operators and a nonmonotone perturbation. Moreover, throughan appropriate transformation, the existence of anti-periodic solutions for a class of secondorder nonlinear evolution equations is verified. Our abstract results are illustrated by anexample from quasi-linear partial differential equations with time anti-periodic conditionsand an example from quasi-linear anti-periodic hyperbolic differential equations.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2004年第1期96-108,共13页 系统科学与复杂性学报(英文版)
基金 This research is supported by the Science and Technology Committee of Guizhou Province,China(20023002)
关键词 nonlinear evolution equation monotone operator anti-periodic solution quasi-linear partial differential equation 反周期解 非线性发展方程 存在性 非单调扰动 Banach空间 拟线性偏微分方程 单调算子
  • 相关文献

参考文献16

  • 1L L Bonilla, and F J Higuera, The onset and end of the Gunn effect in extrinsic semiconductors,SIAM J Appl Math, 1995, 55: 1625-1649.
  • 2D S Kulshreshtha, J Q Liang, and H J W Muller-Kirsten, Fluctuation equations about classical field configurations and supersymmetric quantum mechanics, Physics, 1993, 225: 191-211.
  • 3C V Pao, Periodic solutions of parabolic systems with nonlinear boundary condition, J Math Anal Appl, 1999, 234: 695-717.
  • 4C V Pao, Periodic solutions of parabolic equations in unbounded domains, Nonlinear Anal, 2000,40: 523-535.
  • 5H Okochi, On the existence of antiperiodic solutions to nonlinear parabolic equations in noncylindrical domains, Nonlinear Anal, 1990, 14:771 783.
  • 6M Nakao, Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J Math Anal Appl, 1996, 204: 868-883.
  • 7N S Papageorgiou, Optimal control of nonlinear evolution equations with nonmonotone nonlinearities, J Optima theory and applications, 1993, 77:643 660.
  • 8R I Becker, Periodic solutions of semilinear equations of evolution of compact type, J Math Anal Appl, 1981, 82: 33-48.
  • 9J Prüss, Periodic solutions of semilinear evolution equations, Nonlinear Anal, 1979, 3: 601-612.
  • 10X Xiang, and N U Ahmed, Existence of periodic solutions of semilinear evolution equations with time lags, Nonlinear Anal, 1992, 18: 1063-1070.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部