期刊文献+

波形长度分形维数在结构振动诊断中的应用

Application of length fractal dimension on waveform in structure vibration monitoring
下载PDF
导出
摘要 在Hausdorff维数和分配维数的基础上 ,采用拓扑映射技术 ,提出了振动波形长度分形维数的定义和计算公式 ,并对其数学严密性进行了证明。结合工程实例探讨了基于振动波形长度分形维数计算的结构振动诊断技术 :模型增长法和滑动窗法。该技术对于波形异常检测表现出精度高、抗噪能力强及自动快捷等优势 ,构成了一条分形理论用于结构振动诊断的有效技术路线 ,具有良好的应用价值。 Based on Hausdorff dimension and Divider dimension,the definition and computing formula of Length fractal dimension(D_L) on vibration waveform are proposed using topology mapping. The formula's mathematical strictness is proved.Clear physical concept,simple computation and easy realization in program are D_L's properties.By D_L the methods of model growth and sliding window to structure vibration monitoring are studied and their advantages of high accuracy,strong immunity to noise,excellent automatization and swiftness are validated in detecting the singularities of waveform from practical engineering examples.So an effective technology routine is formed, and is of good application value.
出处 《水文地质工程地质》 CAS CSCD 2004年第1期91-94,共4页 Hydrogeology & Engineering Geology
基金 水利部科技创新项目资助 (SCX2 0 0 0 5 6) 山东农业大学科技创新基金项目资助 (2 0 0 3 0 7)
关键词 分形维数 结构振动诊断 HAUSDORFF维数 分配维数 地震波 振动波形长度 Hausdorff dimension Divider dimension topology mapping Length fractal dimension seismic wave first arrival vibration monitoring
  • 相关文献

参考文献2

二级参考文献3

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部