摘要
R. Redlinger在文[1]中证明了半线性抛物型系统的每个有界解是C^2(?)-紧的.本文加强了这一结果,证明了在一定条件下,每个有界解是C^(2+μ,1+μ/2)(?×R^+)-正则的.应用这个结果讨论了线性非齐抛物型系统周期解的存在性.
In [1], R. Redlinger proved that every bounded solution of parabolic systems is C^2(■)-compact. This paper improves Redlinger's result and proves that every bounded solution is C^(2+δ,1+δ/2)(?×R^+) regular for some δ∈(0,1). Using this result, an existence result of periodic solutions of linear parabolic systems is obtained.
出处
《西北师范大学学报(自然科学版)》
CAS
1992年第1期5-8,共4页
Journal of Northwest Normal University(Natural Science)
关键词
抛物系统
C^2-紧性
有界解
正则性
parabolic system
C^2-compacness
C^(2+δ,1+δ/2)-regularity