期刊文献+

求解非线性方程的两个区间套算法 被引量:1

TWO INTERVAL ENCLOSING ALGORITHMSFOR SOLVING NON-LINEAR EQUATION
下载PDF
导出
摘要 利用Lagrange插值和Hermite插值对Alefeld,Potra的3种算法作了改进,构造了求解非线性方程f(x)=0在区间[a,b]中单根x 的两个区间套算法。与Alefeld,Potra的3种算法相比,这两个新算法的Q收敛阶和效率指数更高。证明了算法的收敛性,给出了收敛阶和效率指数。数值实验验证了算法是可靠和有效的。 With the ideas of Lagrange interpolation and Hermit interpolation,two interval enclosing algorithms for solving the single root of nonlinear equation f(x)=0 are presented. The Q -convergence order and efficiency index of these two algorithms are higher than those in Alefeld and Potra's. The convergence is proved. Numerical results also show that the algorithms are reliable and efficient.
出处 《青岛大学学报(自然科学版)》 CAS 2003年第4期1-7,共7页 Journal of Qingdao University(Natural Science Edition)
基金 国家自然科学基金资助课题(50174051)。
关键词 非线性方程 区间套算法 收敛阶 效率指数 插值函数 LAGRANGE插值 HERMITE插值 收敛性 nonlinear equation interval enclosing algorithm convergence order efficiency index, interpolation function
  • 相关文献

参考文献9

  • 1Alefeld G, Potra F. Some efficient methods for enclosing Simple zeros of nonlinear equations[J]. BIT, 1992,32:334-344.
  • 2Alefeld G, Potra F,shi Yixun.On enclosing simple roots of nonlinear equations[J].Mathematics of Computation, 1993,61(204):733-744.
  • 3D.LE. An efficient derivative-free methods for solving nonlinear equations[J]. ACM,Transac-tions on Math software, 1985,11(3):250-262.
  • 4Anderson N, Ake Bjorck. A new high order method of regula falsi type for computing a root of an equation[J]. BIT, 1973,13:253-264.
  • 5Ostrowski A M. Solution of Equations in Banach Spaces[M]. New York: Academic Press,1973.
  • 6King R.F., Argonne Illinois. Methods without secant steps for finding a bracketed root[J]. Computing,1976,17:49-57.
  • 7Potra F. On the Q-order and R-order of convergence[J]. Journal of optimization theory and applications,1989,63(3):415-431.
  • 8Schmidt J.W. On the R-order of coupled sequences[J]. Computing, 1981,26:333-342.
  • 9孔敏,沈祖和.解非线性方程组的极大熵方法[J].高等学校计算数学学报,1999,21(1):1-7. 被引量:13

二级参考文献7

共引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部