期刊文献+

地磁活动与太阳活动对环电流离子成分与位置的影响 被引量:5

EFFECT OF GEOMAGNETIC ACTIVITY AND SOLAR-CYCLE VARIATION ON THE RING CURRENT IONS
下载PDF
导出
摘要 根据CRRES卫星上MICS离子成分探测器的观测资料以及前人有关AMPTE卫星的观测数据 ,研究了地磁活动和太阳活动性对环电流成分以及各种环电流离子的最大通量位置的影响 .观测表明相对于地磁平静时期 ,在地磁活动的活跃时期 ,环电流中O+ 、He+ + 和He+ 离子的数密度和能量密度占环电流总数密度和总能量密度的份额增加 ,相反H+ 离子所占的比例却明显减少 .太阳活动极大年时环电流中H+ 离子丰度比极小年时低 ,而O+ 和He+ + 离子的丰度却比太阳活动极小年时高 .卫星数据观测还表明 ,在地球磁暴期间 ,环电流中O+ 离子和He+ 离子的最大通量位置会随着地磁的活动径向移动 ,平均来看太阳活动极大年的能量粒子最大数密度位置距离地球比极小年时约小 0 .5RE(RE为地球半径 ) . We study the effect of the solar-cycle and geomagnetic activity on the composition and their maximum positions of the ring current ions by using the energetic particle data obtained by MICS instrument on board CRRES satellite and other research results of AMPTE. Observations show that the number density ratio and energy density ratio of O +,He ++ and He + ions to the total ring current all have an increase during geomagnetic active times, whereas that of H + ions exhibits an obvious decrease. Compared with AMPTE observations in the solar minimum, the abundance of the ring current H + is apparently lower in the solar maximum than that during solar minimum. In contrast, the abundance of both O + and He ++ ions are higher. CRRES data also indicate that, in addition to the inward motion of the position of the maximum flux of O + and He + during a geomagnetic storm, the altitude of the maximum number density of the energetic ions is about 0.5 R E lower in the solar maximum than that in the solar minimum.
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2003年第6期725-730,共6页 Chinese Journal of Geophysics
基金 国家自然科学基金委主任基金 ( 4 0 14 40 15 ) 国家自然科学基金重大项目部分资助
关键词 地磁活动 太阳活动 环电流 能量离子 Ring current, Energetic ions, Solar activity, Geomagnetic activity.
  • 相关文献

参考文献17

  • 1Akasofu S-I, Chapman S, Venkatesan D. The main phase of great magnetic storms. J . Geophys . Res., 1963,68(11) :3345 - 3350
  • 2Gloeckler G, Hamilton D C. AMPTE ion composition results. Phys.Sci., 1987, T18:73 ~ 84
  • 3Grande M C, Perry H, Blake J, et al. Evolution of the ring current ion population, as observed by the CRRES/MICS instrument. In: G D Reeves ed. Workshop on the Earth's Trapped Particle Environment. New York: AIP, 1996. 137 ~ 143
  • 4Smith PH, Bewtra NK, HoffmanRA. Inference of the ring current on composition by means of charge exchange decay. J. Geophys.Res., 1981, 86:3470 ~ 3480
  • 5Krimigis S M, Gloeckler G, McEntire R W, et al. Magnetic storm of September 4, 1984: a synthesis of ring current spectra and energy densities measured with AMPTE/CCE. Geophys. Res. Lett., 1985,12(A5) :329 ~ 332
  • 6Hamilton D C, Gloeckler G, Ipavich F M, et al. Ring current development during the great geomagnetic storm of February 1986.J. G eophys. Res., 1988,93(A12) :14343 ~ 14355
  • 7Daglis I A, Sarris E T, Wilken B. AMPTE/CCE CHEM observations of the ion population at geosynchronous altitudes. Ann. Geophys.,1993,11: 685 ~ 696
  • 8Daglis I A. The role of magnetosphere-ionosphere coupling in magnetic storm dynamics. In: W D Gonzalez, Y Kamide, B T Tsurutani,eds. Magnetic Storms, Geophys. Monogr. Ser., Washington, D.C. :American Geophysical Union, 1997.107 ~ 116
  • 9Fu S Y, Wilken B, Zong Q G, et al. Ion composition variation in the inner magnetosphere-Individual and collective storm effects in 1991.J. Geophys. Res., 2001, 106(12): 29683 ~ 29704
  • 10Fu S Y, Zong Q G, Wilken B, et al. Temporal and spatial variation of the ion composition in the ring current. Space Sci. Rev., 2001,95(1): 539~554

同被引文献102

  • 1Williams D J. Dynamics of the Earth's ring current: Theory and observations. Space Sci Rev, 1985, 42:375--396.
  • 2Gonzalez W D, Joselyn J A, Kamide Y, et al. What is a geomagnetic storm.9 J Geophys Res, 1994, 99:5771--5792.
  • 3Campbell W H. Geomagnetic storms, the Dst ring-current myth and lognormal distribution. J Atmos Terr Phys, 1996, 58:1171--1187.
  • 4Le G, Russell C T, Takahashi K. Morphology. of the ring current derived from magnetic field oberservations. Ann Geophys, 2004, 22: 1267--1295.
  • 5Jorgensen A M, Spence H E, Hughes W J, et al. A statistical study of the global structure of the ring current. J Geophys Res, 2004, 109, A05203, doi: 10.1029/2003JA010090.
  • 6Daglis I A, Thorne R M, Baumjohann W, et al. The terrestrial ring current: Origin, formation, and decay. Rev Geophys, 1999, 37(4): 407-438, 10.1029/1999RG900009.
  • 7Turner N E, Baker D N, Pulkkinen T I, et al. Energy content in the storm time ring current. J Geophys Res, 2001, 106:19149--19156.
  • 8Jordanova V K, Kozyra J U, Khazanov G V, et al. A bounce-averaged kinetic model of the ring current ion population. Geophys Res Lett, 1994, 21:2785.
  • 9Northrol~ T G. The Adiabatic Motion of Charl~ed Particles. New York: Wiley Interscience, 1963.
  • 10Liemohn M W, Kozyra J U, Clauer C R, et al. Adiabatic energization in the ring current and its relation to other source and loss terms. J Geophys Res, 2002, 107, A4: 1045, doi: 10.1029/2001JA000243.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部