期刊文献+

TiAl合金中的γ→α析出转变行为 被引量:4

γ→α precipitation transformation in γ-TiAl alloy
下载PDF
导出
摘要 研究了Ti 48Al和Ti 48Al 0.8B合金中的γ→α析出转变,分析了α析出相的生长形态、晶体学特征、生长动力学及α/γ相界面结构。结果显示α相从γ相中析出有两种方式:一种是从γ晶粒内沿{111}γ晶面以片状形貌析出,且α相与γ基体保持共格位向关系;另一种则是在γ晶界上通过不连续析出转变,以不规则的块状形貌析出,并向着晶界一侧与之无位向关系的γ晶粒内生长。添加0.8%(摩尔分数)B能显著降低γ晶粒内片状α析出相的形核率,并抑制α相生长。HREM分析表明:片状α相是在γ相的堆垛层错上形核,并通过"台阶凸起扭折"机制生长;α/γ相界面上复杂层错的存在及台阶形核率低是片状α相沿厚度方向生长缓慢的主要原因。 The mechanism of γ→α phase transformation in Ti48Al and Ti48Al0.8B alloys was studied. The morphological and crystallographic features, growth kinetics of α precipitate, and α/γ interphase boundary structure were analyzed. There are two ways of α phase precipitating from the γ matrix. The α plate, which is coherent with the γ matrix, precipitates on the {111}γ plane in the γ grain interior. Concurrently, the irregular α particle precipitates on the γ grain boundary through the discontinuous precipitation transformation. The addition of 0.8%(mole fraction)B into the Ti48Al alloy dramatically decreases the nucleation rate of α plate and impedes the growth of α phase. HREM analysis shows that the α plate nucleates on the stacking fault in the γ matrix and grows by the 'terraceledgekink' mechanism. The intricate stacking fault on the α/γ interphase boundary and the low nucleation rate result in very slow thickening of the α plate.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2003年第4期827-834,共8页 The Chinese Journal of Nonferrous Metals
关键词 TIAL合金 相变 形核 晶体生长 晶体位向 相界面 TiAl alloy phase transformation nucleation and growth orientation relationship phase boundary
  • 相关文献

同被引文献44

  • 1杨弘,陈民.深过冷液态Ni_2TiAl合金热物理性质的分子动力学模拟[J].物理学报,2006,55(5):2418-2421. 被引量:6
  • 2[1]Kim Y W,Dimiduk D M.Progress in the Understanding of Gamma TiAl[J].J.M,1991,43:40-47.
  • 3[4]D.J.Oh,R.A.Johnson,Simple Embedded Atom Method Model for fcc and hcp Metals[J].J.Mater.Res.,1988(3):471-478.
  • 4[5]Daw M S,M I Bakes.Embedded-atom Method:Derivation and Application to Impurities,Surfaces,and Other Defects in Metals[J].Phys.Rev.,1984,B29:6443-6453.
  • 5[6]D.C.Rapaport.The Art of Molecular Dynamics Simulation[M].New York:Cambriage University Press,1995:55-98
  • 6[7]M.Parrinello,A.Rahman.Crystal Structure and Pair Potentials:A Molecular-Dynamics Study[J].Phys.Rev.Lett.,1980,45:1196.
  • 7[8]M.P.Allen.Computer Simulation of Liquids[M].New York:Oxford University Press,1987:33-68.
  • 8[9]A.J.Kovacs,J.M.Hutchinsen,J.J.Akionis,The Structure of Noncrystalline Materials[M].London:Taylor & Francis,1977:153-159.
  • 9[10]M.Shimono,H Onodera.Molecular Dynamics Study on TiAl Amorphous Alloys[J].Mater.Sci.Eng.,2001,A304-306:515-519.
  • 10Liu C T. Recent advances in ordered intermetallics[J].Materials Chemistry and Physics, 1995, 42(2): 77 -86.

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部