期刊文献+

Ti-25V-15Cr-2Al-0.2C合金的组织、性能及其变形机制 被引量:9

Microstructure, tensile properties and deformation mechanisms of Ti-25V-15Cr-2Al-0.2C alloy
下载PDF
导出
摘要 对Ti 25V 15Cr 2Al 0.2C阻燃β钛合金的微观组织、拉伸性能和变形机制进行了研究。结果表明:(Ti,V)C和α相是β基体上的2种主要析出相;高温长期热暴露(540℃,100h)后的合金晶界上形成连续的α膜,其塑性因此急剧下降;β基体在热暴露过程中发生微弱的短程有序化(SRO)转变,这在一定程度上破坏了合金的热稳定塑性;该合金室温变形以普通位错滑移为主要形变机制,热暴露后的变形结构中出现少量平面滑移带,位错的交滑移和攀移是合金540℃高温变形的重要形变机制。 The microstructure, tensile properties and deformation mechanisms of nonburning β titanium alloy Ti25V15Cr2Al0.2C (mass fraction, %) were investigated. The results show that, (Ti, V)C and α are two main precipitation phases in the β matrix of the alloy; after longterm exposure (540 ℃, 100 h), the ductility of the alloy is decreased drastically, mainly due to a continuous α film formed at β grain boundaries; a low degree of short range ordering (SRO) of the β matrix occurs during longterm exposure at 540 ℃, which impairs the thermal stability of the alloy to a certain degree; the ordinary dislocation slip is the main mode of room plastic deformation of the alloy; a small number of planar slip bands appear in the deformation structure of the alloy after longterm exposure; dislocation crossslip and climb are the important deformation modes of the alloy at 540 ℃.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2003年第4期939-943,共5页 The Chinese Journal of Nonferrous Metals
关键词 阻燃钛合金 热暴露 微观组织 拉伸性能 变形机制 non-burning titanium alloy thermal exposure microstructure tensile property deformation mechanism
  • 相关文献

参考文献12

  • 1[1]Hansen J O, Sound H , Novotnak D, et al. Heat treatment to reduce embrittlement of titanium alloys[P]. US Patent: 5397404, 1995-03-14.
  • 2[2]Giary K. High-strength titanium resistant ignition[J]. Advanced Materials and Processes, 1993, 9: 7-10.
  • 3[3]Seagle S R. The state of the USA titanium industry in 1995[J]. Materials Science and Engineering A, 1996, 213: 1-7.
  • 4[4]Boyer R R. An overview on the use of titanium in the aerospace industry[J]. Materials Science and Engineering A, 1996, 213: 103-114.
  • 5[5]Li Y G, Zhang X D, Blenkinsop P A, et al. The development and evaluation of β titanium alloys for aerospace applications[A]. Blenkinsop P A, Evens W J. Proceedings of the 8th World Conference on Titanium[C]. London: The Institute of Materials, 1996. 2317-2324.
  • 6[6]Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on ordering of highly stabilized β-Ti-V-Cr alloys[J]. Materials Science and Technology, 1998, 14(8): 732-737.
  • 7[7]Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of aluminium on deformation structure of highly stabilized β-Ti-V-Cr alloys[J]. Materials Science and Technology, 1999, 15(2): 151-155.
  • 8[8]Li Y G, Blenkinsop P A, Loretto M H, et al. Structure and stability of precipitates in 500℃ exposed Ti-25V-15Cr-xAl alloys[J]. Acta Mater, 1999, 46(16): 5777-5794.
  • 9[9]Li Y G, Blenkinsop P A, Loretto M H, et al. Effect of carbon and oxygen on microstructure and mechanical properties of Ti-25V-15Cr-2Al alloy[J]. Acta Mater, 1999, 47(10): 2889-2905.
  • 10[10]Li Y G, Loretto M H, Rugg D, et al. Effect of heat treatment and exposure on microstructure and mechanical properties of Ti-25V-15Cr-2Al-0.2C alloy[J]. Acta Mater, 2001, 49(11): 3011-3017.

同被引文献42

引证文献9

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部