摘要
本文证明了对任意具可数基的Banach空间E,对任意自然数k,都存在E的同胚空间E_k和1/k内同构T_k∈B[E_k,F],使对任意等距算子T∈B[E_k,F],都成立不等式 ||T_k-T||≥1这里F为可数基空间的万有空间l∞ ,L∞或C[0,1]。
in this paper, the next theorem is proved. Let E be a Banach space with a countable base. Then to every positive integer K. there exists a space E_k homeomorphic to E and there exists a 1/K into isomorphism T_k∈B[E_k, F] satisfying ‖T_k-T‖≥1 for every isometric into isomorphism T∈B[E_k, F], where F is one of the universal spaces l~∞, L~∞ or C[0, 1] of separable Banach spaces.
出处
《西南交通大学学报》
EI
CSCD
北大核心
1992年第2期84-88,共5页
Journal of Southwest Jiaotong University