摘要
主要对Kenmotsu流形的不变子流形和反不变子流形进行讨论,得到了以下两个主要结论:1.若M是具有常截面曲率C的Kenmotsu空间型(?)(C)的不变子流形,则M全测地的充要条件为M也具有常截面曲率C.2.若M^(n+1)是Kenmotsu流形M^(2n+1)的反不变子流形,则M的法联络平坦当且仅当M有常曲率C=-1.
In this paper. The following two main results was proued.i ) Let M be an invariant submanifolci of a Kcnrnotsu space form M ( C ) with constant -sectional curvature C.Then M is totally geodesic if and only if M is of constant -sectional curvature C.ii ) Let M be an (n+1)-dimensional anti-invariant submanifold, tangent to the structure vector field , of a (2n + l)-dimensional Kenmotsu manifoldM. Then the nornal connection of M is flat if and only if M is of constant curvature -i.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
1992年第1期27-31,共5页
Journal of Southwest China Normal University(Natural Science Edition)
关键词
Kenmotsu流形
不变子流形
空间型
Kenmotsu manifold
invariant snbmanifold
anti-invariant
sectional cnrvatnre
space form