摘要
提出了一类无穷多种称为准熵的新的独立性度量 ,它们用严格凸函数对原变量经分布函数变换再量化后得到的变量的联合概率的均匀性进行度量 ,并提出了基于准熵的盲分离算法 ,可分离任意连续分布的信号 ,包括峭度为零的信号。通过与前人算法的对比试验 。
A class of new infinitely many independence measures named quasi\|entropy (QE) is proposed, in which strictly convex functions are used to evaluate the uniformity of the joint probability of the variables. In QE, none of priori assumptions is made on the shape or statistical features of the distribution functions of continuous variables but unbiased estimates of the values of distribution functions are obtained from the samples. Therefore, blind separation algorithms based on QE can separate signals with arbitrary continuous distributions, including those with zero kurtoses. The superior performance of the QE\|based algorithms is verified by comparison experiments with previous algorithms.
出处
《武汉大学学报(信息科学版)》
EI
CSCD
北大核心
2004年第1期84-88,共5页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金青年科学基金资助项目 (60 2 0 2 0 14 )
关键词
盲分离
独立性
独立元分析
准熵
blind separation
independence
independent component analysis