期刊文献+

Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube

Nonlinear Waves in an Inhomogeneous Fluid Filled Elastic Tube
下载PDF
导出
摘要 In a thin-walled, homogeneous, straight, long, circular, and incompressible fluid filled elastic tube, small but finite long wavelength nonlinear waves can be describe by a KdV (Korteweg de Vries) equation, while the carrier wave modulations are described by a nonlinear Schr?dinger equation (NLSE). However if the elastic tube is slowly inhomogeneous, then it is found, in this paper, that the carrier wave modulations are described by an NLSE-like equation. There are soliton-like solutions for them, but the stability and instability regions for this soliton-like waves will change, depending on what kind of inhomogeneity the tube has.
作者 DUANWen-Shan
机构地区 DepartmentofPhysics
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第1期115-118,共4页 理论物理通讯(英文版)
基金 The project supported by National Natural Science Foundation of China under Grant No.10247008 the Natural Science Foundation of Northwest Normal University under Grant No.NWNU-KJCXGC-215
关键词 nonlinear wave INHOMOGENEITY 非线性波 不均匀流 弹性管 KdV方程 流体力学 牛顿流 数学形式
  • 相关文献

参考文献12

  • 1[1]V.V. Konotop, Phys. Rev. E53 (1996) 2843.
  • 2[2]H. Hashimoto and H. Ono, J. Phys. Soc. Japan 33 (1972)605.
  • 3[3]B.S. Xie and K.F. He, Phys. Plasmas 6 (1999) 3808.
  • 4[4]W.S. Duan, Chaos, Soliton and Fractals 14 (2002) 503,1315; Phys. Plasmas 8 (2001) 3583.
  • 5[5]S. Munro and E.J. Parkes, J. Plasma Phys. 62 (1999) 305.
  • 6[6]S. Munro and E.J. Parkes, J. Plasma Phys. 64 (2000) 411.
  • 7[7]S.J. Cowley, Quart. J. Mech. Appl. Math. 36 (1983) 280.
  • 8[8]G.L. Lamb, Elements of Soliton Theory, John Wiley, NewYork (1982).
  • 9[9]S. Yomasa, J. Phys. Soc. Japan 56 (1987) 506.
  • 10[10]J.F. Paquerot and M. Remoissenet, Phys. Lett. A194(1994) 77.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部