A unified incompressible lattice BGK model and its application to three-dimensional lid-driven cavity flow
被引量:3
参考文献18
1 Chen S Y and Doolen G D .1998 Annu Rev Fluid Mech 30 32.
2 Luo L S .2000 Proc Int Conl Appl CFD (Beijing) p52.
3 Guo Z L, Zheng C G, Li Q and Wang N C .2002 Lattice Boltzmann Method for Hydrodynamics (Wuhan: Hubei Science & Technology Press) (in Chinese).
4 He X and Luo L S .1997 J State Phys 88 927.
5 Lin Z, Fang H and Tao R .1997 Phys Rev E 54 6323.
6 Zou Q, Hou S, Chen S and Doolen G .1995 J State Phys 81 35.
7 Guo Z L, Shi B C and Wang N C .2000 J Comput Phys 165 288.
8 Shi B C, Guo Z L and Wang N C .2002 Chin Phys Lett 19 515.
9 Guo W B, Wang N C, Shi B C and Guo Z L .2003 Chin Phys 12 67.
10 Guo Z L, Zheng C G and Shi B C .2002 Chin Phys 11 366.
同被引文献25
1 CHEN FeiGuo,GE Wei,LI JingHai.Molecular dynamics simulation of complex multiphase flow on a computer cluster with GPUs[J] .Science China Chemistry,2009,52(3):372-380. 被引量:9
2 柳有权,刘学慧,吴恩华.基于GPU带有复杂边界的三维实时流体模拟[J] .软件学报,2006,17(3):568-576. 被引量:54
3 朱红斌,刘学慧,柳有权,吴恩华.基于Lattice Boltzmann模型的液-液混合流模拟[J] .计算机学报,2006,29(12):2071-2079. 被引量:19
4 莫则尧,陈军,曹小林,译.并行计算综论[M].北京:电子工业出版社,2005.
5 AIDUN C, CLAUSEN J. Lattice Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42(1): 439-472.
6 SUCCI S. The lattice Boltzmann equation for fluid dynamics and beyond[M]. Oxford, UK: Oxford University Press, 2001.
7 SHAN X. Multicomponent lattice Boltzmann model from continuum kinetic theory[J]. Physical Review E, 2010, 81(4): 045701.
8 WU J, AIDUN C K. Simulating 3D deformable particle suspensions using lattice Boltzmann method with discrete external boundary force[J]. International Journal for Numerical Methods in Fluids, 2010, 62(7): 765-783.
9 HUANG H, WANG L, LU X. Evaluation of three lattice Boltzmann models for multiphase flows in porous media[J]. Computers and Mathematics with Applications, 2011, 61(12): 3606-3617.
10 AOYAMA Y, NAKANO J. RS/6000 SP: Practical MPI programming[CP/OL].http://www.redbooks.ibm.com/abstracts/sg245380.html.
引证文献3
1 梁功有,曾忠,张良奇,谢海琼.格子Boltzmann方法三维并行程序设计[J] .水动力学研究与进展(A辑),2011,26(5):531-537. 被引量:1
2 黄昌盛,张文欢,侯志敏,陈俊辉,李明晶,何南忠,施保昌.基于CUDA的格子Boltzmann方法:算法设计与程序优化[J] .科学通报,2011,56(28):2434-2444. 被引量:11
3 XIONG QinGang,LI Bo,XU Ji,FANG XiaoJian,WANG XiaoWei,WANG LiMin,HE XianFeng,GE Wei.Efficient parallel implementation of the lattice Boltzmann method on large clusters of graphic processing units[J] .Chinese Science Bulletin,2012,57(7):707-715. 被引量:6
二级引证文献15
1 张超英,黎槟华,覃章荣.基于CUDA的晶格Boltzmann并行算法的综合优化设计[J] .广西师范大学学报(自然科学版),2012,30(3):142-148.
2 刘欢,刘雪梅,郭松.基于3D-LBM的多相流快速模拟[J] .计算机应用研究,2013,30(5):1564-1567.
3 严立,戴欣怡,陈佳洛,王平阳,欧阳华.基于计算统一设备架物Fortran的直接模拟蒙特卡洛方法并行优化[J] .上海交通大学学报,2013,47(8):1198-1204. 被引量:2
4 赵海波,徐祖伟,刘昕,史家伟,郑楚光.颗粒凝并动力学MonteCarlo方法的高效GPU并行计算[J] .科学通报,2014,59(14):1358-1368. 被引量:3
5 GAO Ang,HU YanSu,WANG ZhiJun,MU DeJun,LI JunJie,WANG JinCheng.GPU-accelerated phase field simulation of directional solidification[J] .Science China(Technological Sciences),2014,57(6):1191-1197. 被引量:1
6 Yanwei Zhang,Yu Bo,Yingchun Wu,Xuecheng Wu,Zhenyu Huang,Junhu Zhou,Kefa Cen.Flow behavior of high-temperature flue gas in the heat transfer chamber of a pilot-scale coal-water slurry combustion furnace[J] .Particuology,2014,12(6):114-124.
7 朱炼华,郭照立.基于格子Boltzmann方法的多孔介质流动模拟GPU加速[J] .计算物理,2015,32(1):20-26. 被引量:9
8 贺永翔,刘昕,赵海波.气体动力学直接模拟Monte Carlo的高效GPU并行计算[J] .计算物理,2015,32(2):169-176. 被引量:3
9 金开文,张国雄,胡平,卿山,王华,伍祥超,田振伟.基于格子Boltzmann方法的泊肃叶流数值研究[J] .工业炉,2015,37(4):1-5. 被引量:1
10 雷体蔓,孟旭辉,郭照立.多孔介质中化学反应对非等粘流体混合过程影响的格子Boltzmann研究[J] .计算物理,2016,33(4):399-409. 被引量:8
1 Wang Qi,Ma Fu-ming.Numerical Stability and Oscillations of Runge-Kutta Methods for Differential Equations with Piecewise Constant Arguments of Advanced Type[J] .Communications in Mathematical Research,2013,29(2):131-142.
2 田红炯,匡蛟勋.THE NUMERICAL STABILITY OF THE BLOCK θ-METHODS FOR DELAY DIFFERENTIAL EQUATIONS[J] .Numerical Mathematics A Journal of Chinese Universities(English Series),2001,10(1):1-8. 被引量:1
3 Yi Hu YANG Department of Applied Mathematics. Tongji University. Shanghai. 200092. China.Non-Kahleriallity of Nonuniform Lattices in SO(3, 1)[J] .Acta Mathematica Sinica,English Series,2002,18(4):801-802.
4 Elizaldo D. dos Santos,Adriane P. Petry,Luiz A.O. Rocha,Francis H.R. Franqa.Numerical Study of Forced Convection Lid-Driven Cavity Flows Using LES (Large Eddy Simulation)[J] .Journal of Energy and Power Engineering,2013,7(9):1669-1680.
5 熊鳌魁.INTRINSIC INSTABILITY OF THE LATTICE BGK MODEL[J] .Acta Mechanica Sinica,2002,18(6):603-607. 被引量:1
6 LAI HuiLin,MA ChangFeng.A higher order lattice BGK model for simulating some nonlinear partial differential equations[J] .Science China(Physics,Mechanics & Astronomy),2009,52(7):1053-1061. 被引量:3
7 段志文,韩淑霞,周笠.BOUNDARY LAYER ASYMPTOTIC BEHAVIOR OF INCOMPRESSIBLE NAVIER-STOKES EQUATION IN A CYLINDER WITH SMALL VISCOSITY[J] .Acta Mathematica Scientia,2008,28(3):449-468. 被引量:4
8 Begona Cano,Adolfo Gonzalez-Pachon.PLANE WAVES NUMERICAL STABILITY OF SOME EXPLICIT EXPONENTIAL METHODS FOR CUBIC SCHRODINGER EQUATION[J] .Journal of Computational Mathematics,2016,34(4):385-406.
9 WANG He-yuan,CUI Yan,HUANG Min.A New Seven-modes Truncation of the Plane Incompressible Navier-Stokes EquationsA New Seven-modes Truncation of the Plane Incompressible Navier-Stokes Equations[J] .Chinese Quarterly Journal of Mathematics,2012,27(1):11-17. 被引量:3
10 刘浪,王孝国,强士中.On the Arbitrary Difference Precise Integration Method and Its Numerical Stability[J] .Journal of Modern Transportation,2000,17(1):51-58.
;