期刊文献+

钛合金中亚晶的电子显微镜观察 被引量:2

Microscopic Examination of the Subgrain in the Ti Alloy
下载PDF
导出
摘要 用透射电子显微镜观察了TC6钛合金在高温退火过程中形成的亚晶(Subgrain)。合金经850℃,920℃退火后炉冷和空冷,在初生α相晶粒内形成亚晶,多为成簇分布的狭长形状,亚晶的数量随退火后冷却速度的增加而减少。亚晶界(Subgrain boundary)是由位错构成的,亚晶的形成是多边化(polygonization)的结果。 The subgrains in TC6 alloy formed during, high temperature annealing process were examined by transmission electron microscope. The results show that the subgrains, most of which are long and narrow shape, distributed in clusters, are formed in primary α phase after the alloy is annealed at 850℃ and 920℃, then cooled in furnace and in air. The amount of the subgrains decreases as the cooling rate increases after annealing. The subgrain boundary is composed of dislocation, which is the result of polygonization.
作者 林永新
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 1992年第1期30-32,共3页 Rare Metal Materials and Engineering
关键词 钛合金 亚晶 亚晶界 多边化 TC6 alloy subgrain subgrain boundary polygonization
  • 相关文献

参考文献3

  • 1H. J. McQueen. The production and utility of recovered dislocation substructures[J] 1977,Metallurgical Transactions A(6):807~824
  • 2E. Henry Chia,E. A. Starke. Application of subgrain control to aluminum wire products[J] 1977,Metallurgical Transactions A(6):825~832
  • 3Anthony W. Thompson. Substructure strengthening mechanisms[J] 1977,Metallurgical Transactions A(6):833~842

同被引文献33

  • 1卢柯.纳米晶体材料的研究进展[J].中国科学基金,1994,8(4):245-251. 被引量:14
  • 2刘东,罗子健.以Zener—Hollomon参数表示的GH169合金的本构关系[J].塑性工程学报,1995,2(1):15-21. 被引量:17
  • 3Varma S K,Willits B L. Subgrain growth in aluminim during static annealing[J]. Metallurgical Transactions A, 1984,15 : 1502-1503.
  • 4Hayakawa M, Yamaguchi K, Kimura M. Visualization of subgrain strcture for a ferritic 12Cr-2W steel using backscattered scanning electron microscopy[J]. Materi- als letters, 2004,58 : 2565-2568.
  • 5Bobylev S V,Gutkin M Y,Ovid:ko I A. Transformatio- ns of grain boundaries in deformed nanocrystalline mate- rials[J]. Acta Materialia, 2004,52 : 3793-3805.
  • 6Bobylev S V,Gutkin M Y,Ovid'ko I A. Decay of low- angle tile boundaries in deformed nanocrystalline materi- als[J]. Journal of Physics D: Applied Physics, 2004,37: 269-272.
  • 7Caturla M J, Nieh T G, Stolken J S. Differences in de- formation processes in nanocrystalline nickel with low- and high-angle boundaries from atomistic simulations [J]. Applied Physics Letters, 2004,84 : 598-600.
  • 8Stefanovic P, Haataja M, Proatas N. Phase field crystal study of deformation and plasticity in nanocrystalline materials[J]. Physical Review E, 2009,80 : 046107.
  • 9Elder K R, Katakowski M, Haataja M, et al. Modeling elasticity in crystal growth[J]. Physical Review I.et- ters,2002,88(24): 1245701.
  • 10Elder K R, Grant M. Modeling elastic and plastic de-formations in nonequilibrium processing using phase field crystals[J]. Physical Review E, 2004,70:051605.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部