摘要
With the increasing integration of distributed generations U+0028 DGs U+0029, there is a demand for DGs to play a more important role on the voltage regulation. Meanwhile, the high penetration of DGs could raise a technical problem that the distribution system may operate with bi-directional power flow, leading to the inadequacy of the traditional power flow. Considering this new scenario in distribution system power flow, the convergence theorem is proposed, which contributes to develop a novel selection method of the initial guess closed to the convergent solution. Moreover, to ensure the fast rate of power flow convergence, the theorem of the maximum iterations estimation is also proposed. Based on the two proposed theorems, an Initial Guess Estimation Newton method is proposed, considering different operational status of DGs and initial guess sensitivity simultaneously. Based on the standard node systems, Tongliao grid, and 69 system of USA, three simulation examples are provided to illustrate the effectiveness of the proposed method. © 2017 Chinese Association of Automation.
With the increasing integration of distributed generations(DGs), there is a demand for DGs to play a more important role on the voltage regulation. Meanwhile, the high penetration of DGs could raise a technical problem that the distribution system may operate with bi-directional power flow, leading to the inadequacy of the traditional power flow. Considering this new scenario in distribution system power flow, the convergence theorem is proposed, which contributes to develop a novel selection method of the initial guess closed to the convergent solution.Moreover, to ensure the fast rate of power flow convergence, the theorem of the maximum iterations estimation is also proposed.Based on the two proposed theorems, an Initial Guess Estimation Newton method is proposed, considering different operational status of DGs and initial guess sensitivity simultaneously. Based on the standard node systems, Tongliao grid, and 69 system of USA, three simulation examples are provided to illustrate the effectiveness of the proposed method.
基金
supported by National Natural Science Foundation of China(NSFC)Key Program(61573094)
the Fundamental Research Funds for the Central Universities(N140402001)