期刊文献+

基于模拟退火算法的有限等距常数估计 被引量:3

Restricted Isometry Constants Estimation Based on Simulated Annealing
下载PDF
导出
摘要 有限等距常数是压缩感知测量矩阵的重要参数之一,例如采用正交匹配追踪精确重构稀疏信号须保证有限等距常数满足一定的条件。但有限等距常数的求解是NP难问题,限制了理论结果的实际应用。将有限等距常数求解视为组合优化问题,采用模拟退火算法得到局部最优解,该解是有限等距常数的下限估计值。实验结果表明估计结果稳定,并发现常见几类测量矩阵有限等距常数大于1,这意味着这些矩阵不满足有限等距性质,此现象需进一步研究解释。 Restricted Isometry Constants(RIC)is one of the most important parameters for Compressed Sensing(CS)measurement matrices.For example,RIC should meet some conditions to ensure exact recovery of sparse signals with orthogonal matching pursuit.However,it is a NP-hard problem to solve out RIC which limits application of theoretical results.It is considered as combinatorial optimization problem to solve out RIC.A local optimum is found by simulated annealing algorithm which is a lower limit of RIC.Experiments show that the estimation is stable,and discover a phenomenon that RICs of several common measurement matrices are greater than one.This phenomenon means that these matrices can not satisfy Restricted Isometry Property and requires further study to make an explanation.
作者 贾彬彬 刘俊莹 JIA Bin-bin;LIU Jun-ying(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050 China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou 730050 China;National Demonstration Center for Experimental Electrical and Control Engineering Education,Lanzhou University of Technology,Lanzhou 730050 China)
出处 《自动化技术与应用》 2019年第2期5-7,27,共4页 Techniques of Automation and Applications
基金 甘肃省自然科学基金(编号1610RJYA007 编号1610RJYA026) 甘肃省工业过程先进控制重点实验室开放课题(编号XJK201517)
关键词 压缩感知 测量矩阵 有限等距常数 模拟退火算法 compressed sensing measurement matrices Restricted Isometry Constants simulated annealing algorithm
  • 相关文献

参考文献4

二级参考文献124

  • 1杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645. 被引量:8
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3Donoho D L. Compressed sensing[J]. [EEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Candes E J and Tao T. Decoding by linear programming[J]. IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.
  • 5Candes E J, Romberg J, and Tao T. Robust uncertainty principles: exact signM reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 6Candes E J, Eldar Y C, Needell D, et al.. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011, 31(1): 59-73.
  • 7Zhang T. Sparse recovery with orthogonal matching pursuit under RIP[J]. IEEE Transactions on Information Theory, 2011, 57(9): 6215-6221.
  • 8Haupt J, Bajwa W, Raz G, et al.. Toepitz compressed sensing matrices with applications to sparse channel estimation[J]. IEEE Transactions Information Theory, 2010, 56(11):5862-5875.
  • 9Luo J, Liu X, and Rosenberg C. Does compressed sensing improve the throughput of wireless sensor networks?[C]. IEEE International Conference on Communications, Cape Town. 2010: 1-6.
  • 10Lee S, Pattem S, Sathiamoorthy M, et al.. Spatially-localized compressed sensing and routing in multi~hop sensor networks[C]. Proceedings of the Third International Conference on Geosensor Networks, Oxford, 2009: 11-20.

共引文献396

同被引文献40

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部