期刊文献+

基于学习分析的在线学业成就影响因素研究 被引量:32

A Research on Online Learning Achievement Factors Based on Learning Analysis
下载PDF
导出
摘要 如何利用数据和模型来预测学业成功与失败是学习分析领域的核心问题。该文通过对现有文献检索分析出目前研究中主要影响学业成就的要素,结合对原始数据的深度处理,得到和学习相关的高级行为指标,利用机器学习中神经网络、决策树及线性回归算法分别建模分析。研究发现:学习态度、学习及时水平和投入水平是影响在线学业成就的主要因素,耐挫水平为次要因素,而互动水平、积极水平和阶段成效对最终的学业成就无关。该文最后对研究结果进行了反思后认为,课程选取对研究在线学业成就要素有非常大的影响。 How to use data and models to predict the success and failure of learning is the core problem in the field of learning analysis. Around this theme, domestic and foreign scholars have carried out a lot of research from the aspects of theoretical discussion, framework analysis, etc., and a few scholars have conducted relevant empirical research based on questionnaires or online raw data. The main research methods are regression analysis or structural equation modeling. This paper analyzes the main factors that affect academic achievement in the present research by searching the existing literatures, and gets the advanced behavioral index of the study through the deep processing of the original data. By using neural network, decision tree and linear regression algorithm in machine learning to model and analyze, it is found that learning attitude, Timeliness level and involvement level are the main factors that affect the online academic achievement, while the level of resistance to frustration is the secondary factor. However, the level of interaction, the level of positivity and the level of stage achievement are not related to the final academic achievement. Finally, it is found that the curriculum selection has a great impact on the study of online academic achievement factors.
作者 孙发勤 冯锐 Sun Faqin;Feng Rui(College of Public Administration,Nanjing Agricultural University,Nanjing Jiangsu 210095;School of Journalism and Communication,Yangzhou University,Yangzhou Jiangsu 225009)
出处 《中国电化教育》 CSSCI 北大核心 2019年第3期48-54,共7页 China Educational Technology
基金 教育部人文社会科学研究一般项目"大规模在线开放课程学习行为分析研究"(项目编号:15YJC880065) 江苏高校哲学社会科学研究项目"在线网络课程学习行为分析与应用研究"(项目编号:2015SJB809)阶段性成果
关键词 学习分析 在线课程 学业成就 机器学习 Learning Analysis Online Courses Academic Achievement Machine Learning
  • 相关文献

参考文献7

二级参考文献148

  • 1中华人民共和国教育部.教育信息化十年发展规划(2011-2020年)[EB/OL].(2012-05一08).http://www.iiloe.edu.on/pub-licfilea/businesa/htmlfiles/moe/s3342/201203/133322.hnlll.
  • 2Bienkowski, M., Feng, M. & Means, B.(2012).Enhancing Teaching and Learning Through Educational Data Mining and Learn- ing Analytics: An Issue Brief.
  • 3Bameveld, A., Arnold, K. & Campbell, J.(2012). Analytics in Higher Education: Establishing a Common Language. 2012-1.
  • 4Watson, "Business Analytics Insight.".
  • 5Brown, M. Learning analytics: the coming third wave [DB/OL]. http://net.educause.edtdirllibrarylpdf/ELIB1101.pdf, 2011-4-1.
  • 6Siemens, G. What are Learning Analytics?[EB/OL].[2010-08-25].http: //www.elearnspace.org/blog/2010/08/25/what-are-leaming-analytics/.
  • 7Siemens, G. Learning and Knowledge Analytics- Knewton-the future of education?[EB/OL].[2011-04-14], http://www.learninganalytics.net/ ?p=126.
  • 8Siemens, G. Educational Transformation: Openness And Learning Analytics [DB/OL]. [2010-10-15]. Presented to: Universidad del Sagrado Coraz6n, Retrieved on http://maestrias25.sagrado.edu/pre- sentaciones_siemens/Siemens-Educational Transformation Openness AndLearningAnalytics.pdf.
  • 9Long, P., & Siemens, G. (2011). Penetrating the fog: analytits in learning and education, EDUCAUSE Review,46(5), 31- 40.
  • 10Ferguson, R. The State Of Learning Analytics in 2012: A Review and Future Challenges. [EB/OL].[ 2012-03-01]. http://kmi. open.ac.uk/publications/pdf/kmi- 12-01 .pdf.

共引文献382

同被引文献350

引证文献32

二级引证文献184

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部