摘要
电厂燃煤机组中,锅炉的入炉煤量直接关系到炉膛的燃烧情况,提供锅炉需要的煤粉量对提高锅炉的燃烧效率有重要意义。然而受到各种变化因素的影响,造成入炉煤量的测量误差较大。针对入炉煤量的测量问题,本文提出将主元分析(PCA)技术与支持向量机(SVM)相结合,建立入炉煤量的软测量模型,该方法利用主元分析技术将建模数据进行压缩,降低了支持向量机建模的难度,提高入炉煤量计算的可靠性和准确性。电厂实际运行数据验证表明:该方法能有效跟踪入炉煤量的变化,且计算简便,具有较好的推广应用价值。
In the power plant coal-fired units, the as-fired coal quantity of the boiler directly related to the combustion of the boiler. The appropriate amount of pulverized coal is of great significance for improving the combustion efficiency of the boiler. However, a large measurement error of the as-fired coal quantity caused by the influence of various factors is exited. For the measurement of as- fired coal quantity, this paper proposes the soft sensor method. This method integrates principal component analysis(PCA) and support vector machine(SVM), then establishes the model of the as-fired coal quantity, it uses principal component analysis to the modeling data compression, reduces the modeling difficulty of support vector machine, improves the reliability and accuracy of as- fired coal quantity. The actual operation data in the plant verifies the soft sensor method can effectively track the change trend of as-fired coal quantity, its calculation is simple, and has a better promotional and application value.
出处
《自动化与仪器仪表》
2015年第10期213-214 218,218,共3页
Automation & Instrumentation
关键词
入炉煤量
主元分析
支持向量机
软测量
As-fired coal quantity
Principal component analysis
Support vector machine
Soft sensor