期刊文献+

嵌入式英语语音识别系统误差自动检测方法研究 被引量:11

Research on automatic error detection method of embedded english speech recognition system
原文传递
导出
摘要 为了提高嵌入式英语语音识别系统发音误差自动检测能力,提出基于时频分析和关联信息熵特征提取的嵌入式英语语音识别系统发音误差自动检测方法。采用时频特征分解方法进行嵌入式英语语音识别系统英语发音信号的降噪处理,对降噪输出的英语发音信号进行特征分解和关联维特征配准,结合小波多层重构方法进行语音信号的重组,提取英语发音信号的关联信息熵特征,根据提取的语音信号的关联信息熵特征进行自动匹配,实现对嵌入式英语语音识别系统误差的自动识别。仿真结果表明,采用该方法进行嵌入式英语语音识别系统发音误差自动检测的准确性较好,对语音信号的分辨能力较好,提高了嵌入式英语语音识别系统的发音误差的检测性能。 In order to improve the automatic detection ability of pronunciation error in embedded English speech recognition system,an automatic detection method for pronunciation error of embedded English speech recognition system based on time-frequency analysis and feature extraction of associated information entropy is proposed.The method of time-frequency feature decomposition is used to reduce the noise of the English pronunciation signal in the embedded English speech recognition system.The output English pronunciation signal is decomposed by the feature decomposition and the correlation dimension feature registration is carried out.Combined with wavelet multi-layer reconstruction method,the speech signal is reorganized to extract the associated information entropy feature of the English pronunciation signal,and the correlation information entropy feature of the extracted speech signal is automatically matched according to the extracted speech signal correlation information entropy feature.The tone recognition of embedded English speech recognition system is realized.The simulation results show that the proposed method can detect the pronunciation error of the embedded English speech recognition system with good accuracy and resolution ability.The performance of pronunciation error detection in embedded English speech recognition system is improved.
作者 梁慧 LIANG Hui(Jingzhou Institute of Technology,Jingzhou Hubei 434000,China)
出处 《自动化与仪器仪表》 2019年第9期55-58,共4页 Automation & Instrumentation
基金 荆州职业技术学院教改专项2018年课题:信息化背景下高职学生公共英语自主学习模式研究(No.Jzitjxy-16)
关键词 嵌入式英语语音识别系统 声调 自动检测 特征提取 embedded English speech recognition system tone automatic detection feature extraction
  • 相关文献

参考文献8

二级参考文献53

  • 1张轩,刘进军.微网孤岛运行时基于逆变器的新型功率控制[J].电源学报,2011,9(1):38-42. 被引量:7
  • 2HU Yue,WANG Yue-dong.Process-level virtual machine embedded chain mode memory management method[C]//2011 International Conference on Computer Science and Network Technology(ICCSNT).[S.l.]:[s.n.],2011,1:302-305.
  • 3WUYTACK S,DA SILVA J L,Jr.,CATTHOOR F,et al.Memory management for embedded network applications[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1999,18(5):533-544.
  • 4CHENG Xiao-hui,GONG You-min,WANG Xin-zheng.Study of embedded operating system memory management[C]//ETCS′09First International Workshop on Education Technology and Computer Science.[S.l.]:IEEE,2009,3:962-965.
  • 5SHAHRIAR H,NORTH S,MAWANGI E.Testing of memory leak in android applications[C]//2014 IEEE 15th International Symposium on High-Assurance Systems Engineering(HASE).[S.l.]:IEEE,2014:176-183.
  • 6NI Qin-qin,SUN Wei-zhen,MA Sen.Memory leak detection in sun solaris OS[C]//ISCSCT′08.International Symposium on Computer Science and Computational Technology.[S.l.]:IEEE,2008,2:703-707.
  • 7CARROZZA G,COTRONEO D,NATELLA R,et al.An experiment in memory leak analysis with a mission-critical middleware for air traffic control[C]//IEEE International Conference on Software Reliability Engineering Workshops.[S.l.]:IEEE,2008:1-6.
  • 8MORAES R L O,DURAES J,BARBOSA R,et al.Experimental risk assessment and comparison using software fault injection[C]//Proceedings of the 37th International Conference on Dependable Systems and Networks(DSN).[S.l.]:[s.n.],2007:111-120.
  • 9CHEREM S,PRINCEHOUSE L,RUGINA R.Practical memory leak detection using guarded value-flow analysis[C]//Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation(PLDI).[S.l.]:ACM,2007:22-28.
  • 10XU G,ROUNTEV A.Precise memory leak detection for Java software using container profiling[C]//Proceedings of the 30th International Conference on Software Engineering(ICSE).[S.l.]:[s.n.],2008:123-129.

共引文献123

同被引文献93

引证文献11

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部