期刊文献+

基于支持向量机的心理障碍特征自动测试系统研究

Research on support vector machine based automatic testing system for psychological disorder feature
原文传递
导出
摘要 在心理障碍特征自动测试中,需要建立心理障碍特征自动测试系统,提高心理障碍特征自动测试的信息管理和数据分析能力,提出一种基于支持向量机的心理障碍特征自动测试系统。在心理障碍特征自动测试中,建立心理障碍特征自动测试的大数据信息采样和分析模型,提高心理障碍特征自动测试的信息管理和数据分析能力,构建基于大数据分析技术的心理障碍特征自动测试系统开发技术。系统开发分为心理障碍特征自动测试信息特征提取和特征分类算法设计模块,结合心理障碍特征自动测试系统的软件开发设计,进行系统优化设计。采用大数据融合和特征聚类方法进行心理障碍特征自动测试中的智能信息特征提取算法设计,构建心理障碍特征自动测试的大数据特征信息流,采用支持向量机学习算法进行心理障碍特征分类识别,根据特征分类结果实现心理障碍特征自动测试系统优化设计。测试结果表明,采用该系统进行心理障碍特征分析和测试的准确性较好,系统稳定性较高。 In the automatic testing of psychological disorders,it is necessary to set up an automatic testing system for psychological disorders,so as to improve the ability of information management and data analysis in the automatic testing of psychological disorders.This paper presents an automatic testing system for psychological disorders based on support vector machine(SVM).In the automatic testing of psychological disorders,it is necessary to set up an automatic testing system for psychological disorders,so as to improve the ability of information management and data analysis in the automatic testing of psychological disorders.This paper puts forward the development technology of automatic testing system for psychological obstacle characteristics based on big data analysis technology.The development of the system is divided into two modules:feature extraction and feature classification algorithm design module.Combined with the software development and design of the automatic testing system of psychological obstacle features,the system optimization design is carried out.Big data fusion and feature clustering methods are used to design the intelligent information feature extraction algorithm in the automatic testing of psychological disorder features,and then build the big data feature information flow of psychological obstacle feature automatic test.The support vector machine(SVM)learning algorithm is used to classify and recognize the characteristics of psychological disorders,and according to the results of feature classification,the optimal design of the automatic testing system for psychological disorders is realized.The test results show that the system has good accuracy and stability.
作者 龙涛 LONG Tao(Baoji University of Arts and Sciences,Baoji Shanxi 721013,China)
机构地区 宝鸡文理学院
出处 《自动化与仪器仪表》 2019年第9期101-104,107,共5页 Automation & Instrumentation
基金 陕西省教育厅专项项目“生态文明建设中的高校大学生低碳消费方式引导研究”(No.18JK0040)
关键词 支持向量机 心理障碍特征 自动测试系统 support vector machine psychological disorder feature automatic test system
  • 相关文献

参考文献7

二级参考文献68

  • 1王博涛,舒华英.基于自组织理论的信息系统演化研究[J].北京邮电大学学报(社会科学版),2006,8(1):43-47. 被引量:9
  • 2孟照莉,郑芸,王恺.推荐一种耳鸣主观评估量表[J].听力学及言语疾病杂志,2007,15(4):325-327. 被引量:93
  • 3陈培颖,张卫东.新型解耦控制器的设计及其应用[J].上海交通大学学报,2007,41(5):778-782. 被引量:6
  • 4YANG G Z,Yacoub M. Body Sensor Networks[M].New York:springer-verlag,2006.
  • 5Scanaill C N,Carew S,Barralon P. A review of approaches to mobility telemonitoring of the elderly in their living environment[J].Annals of Biomedical Engineering,2006,(04):547-563.
  • 6King R C,Atallah L,Wong C. Elderly risk assessment of falls with BSN[A].Washington,DC:IEEE Computer Society,2010.30-35.
  • 7Steele B G,Belza B,Cain K. Bodies in motion:Monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease[J].Journal of Rehabilitation Research and Development,2003,(05):45-58.
  • 8Boyle J,Karunanithi M,Wark T. Quantifying functional mobility progress for chronic disease management[A].New York:IEEE Press,2006.5916-5919.
  • 9WANG Zhe-long,JIANG Ming,ZHAO Hong-yu. A pilot study on evaluating recovery of the post-operative based on acceleration and sEMG[A].Washington,DC:IEEE Computer Society,2010.3-8.
  • 10Aziz O,Lo B,Pansiot J. From computers to ubiquitous computing by 2010:health care[J].Philosophical Transactions of the Royal Society A:Mathematical Physical and Engineering Sciences,2008,(1881):3805-3811.

共引文献102

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部