期刊文献+

多媒体网络语音音调数据特征智能识别方法 被引量:1

Intelligent recognition method for multimedia network voice and tone data features
原文传递
导出
摘要 利用传统方法对多媒体网络语音音调数据特征进行识别,存在识别准确性低,识别速度慢的问题。针对上述问题,提出一种新的多媒体网络语音音调数据特征智能识别方法。该方法分为三部分:第一对输入的多媒体网络语音音调数据进行预处理,包括数据转换、预加重、分帧加窗和端点检测等4步;第二提取预处理数据特征参数,包括基音频率、共振峰、mel倒谱系数;第三利用GMM-SVM模型在提取到的特征参数基础上进行智能识别。结果表明:利用本方法对多媒体网络语音音调数据特征进行智能识别,与基于人工神经网络的语音特征识别方法和基于蚁群算法特征选择的语音识别方法相比,平均正确识别率提高8.3%和12.4%,平均所用时间减少0.7 s和1.24 s,识别速度加快。 The traditional methods for recognizing the features of multi-media network speech tone data have the problems of low recognition accuracy and slow recognition speed.In view of the above problems,a new intelligent recognition method for voice and tone data features in multimedia networks is proposed.The method is divided into three parts:first,the input multimedia network voice tone data is pre-processed,including data conversion,pre-emphasis,sub-frame windowing and endpoint detection steps;second,the pre-processed data feature parameters,including pitch frequency,formant,Mel cepstrum coefficient;third,the GMM-SVM model is used to extract the mentioned parameters.Intelligent recognition is done on the basis of characteristic parameters.The results show that this method can be used to recognize the tone data of multimedia network intelligently.Compared with the speech recognition method based on artificial neural network and the speech recognition method based on ant colony algorithm,the average correct recognition rate is increased by 8.3%and 12.4%,and the average recognition time is reduced by 0.7 s and 1.24 s the recognition speed accelerected.
作者 周挺 杨荣 ZHOU Ting;YANG Rong(Xi’an Aeronautical Polytechnic Institute,Xi’an 710089,China)
出处 《自动化与仪器仪表》 2019年第9期132-135,共4页 Automation & Instrumentation
基金 陕西省教育厅2017年科学研究项目立项课题:“基于互联网+环境下高职学生综合素质测评体系构建与实践”(No.17JK0400)
关键词 多媒体 语音音调 数据特征 识别 multimedia voice and tone data characteristics recognition
  • 相关文献

参考文献13

二级参考文献90

  • 1王娟,慈林林,姚康泽.特征选择方法综述[J].计算机工程与科学,2005,27(12):68-71. 被引量:64
  • 2何珏,刘加.基于汉语语音音位的HMM建模方法[J].清华大学学报(自然科学版),2007,47(4):518-521. 被引量:1
  • 3马莉,党幼云.特定人孤立词语音识别系统的仿真与分析[J].西安工程科技学院学报,2007,21(3):371-373. 被引量:11
  • 4李海峰,王炜.基于神经网络的交通方式选择模型[J].公路交通科技,2007,24(7):132-136. 被引量:16
  • 5刘赵杰,邵健,张鹏远,赵庆卫,颜永红,冯稷.汉语自然口语中声调识别的研究[J].物理学报,2007,56(12):7064-7069. 被引量:5
  • 6S Nemati, M E Basiri. Text - independent speaker verication using ant colony optimization - based selected features [ J ]. Expert Sys- tems with Applications, 2011,38 ( 1 ) : 620 - 630.
  • 7Wu Qiang, Zhang Liqing and Shi Guangchuan. Robust Muhifactor Speech Feature Extraction Based on Gabor Analysis [ J ]. IEEE Trans. on Audio, Speech, and Language Processing, 2011,19 (4) : 927 -936.
  • 8S Nemati, R Boostani, M D Jazi. A Novel Text - Independent Speaker Verification System Using Ant Colony Optimization Algo- rithm [ J ]. Lecture Notes in Computer Science, 2008, ( 5099 ) :421 - 429.
  • 9M A H A1 - Saedi, A A G Azzawi. Face Recognition Based on Mixed between Selected Feature by Muhiwavelet and Particle Swarm Optimization[ C ]. Proceedings of the 2010 Developments in E - systems Engineering. USA : IEEE, 2010 : 199 - 204.election.
  • 10C S Jung, M Y Kim, H G Kang. Selecting Feature Frames for Au- tomatic Speaker Recognition Using Mutual Information [ J 1. IEEE Transactions on Audio, Speech, and Language Processing, 2010, 18(6) :1332 - 1340.

共引文献77

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部