期刊文献+

河流突发污染的污染物浓度动态校正方法

Dynamic pollutant concentration correction method for river sudden pollution
下载PDF
导出
摘要 为降低河流突发污染事故的影响,提高下游污染物预测精度、提高预测实时性,结合一维水质模型、卡尔曼滤波及改进的网格寻优算法,综合考虑支流的影响,研究河流突发污染事件中污染物扩散情况的动态预测方法.分析一种改进的网格寻优算法并利用历史数据校正模型参数;借助水质模型构造状态方程引入污染物浓度观测值;运用卡尔曼滤波动态校正预测结果,并在预测过程中考虑支流的影响.在理论研究的基础上,设计基于风浪水槽的污染物模拟扩散实验,对比分析采用不同预测方法的污染物峰现时间、峰值浓度及相对误差.实验结果表明,不同的预测方法所求得的峰现时间相对误差总体相当;采用多步动态校正预测和考虑了支流影响的校正预测方法预测峰值浓度得到的相对误差明显降低. A dynamic pollutant concentration correction forecasting method for sudden pollution accidents in rivers was explored,in order to reduce the influence of sudden pollution accidents and predict pollutant concentrations in the downstream accurately and timely.The one-dimensional water quality model,Kalman filter algorithm and improved grid optimization algorithm were investigated considering the influence of tributaries.An improved grid optimization algorithm using the historical monitoring data was developed to correct the model parameters;the state equation based on one-dimensional water quality model was established;the Kalman filter algorithm was developed to correct the predicted concentration based on the updated observed data considering the influence of tributaries.On the basis of theoretical research,experiments based on the wave flume were set up to simulate the dispersion of pollutants,and to analyze peak time,peak concentrations and the relative errors of different predict methods.Theoretical and experimental results show that the relative errors of predicted peak-time values are at similar levels by different prediction algorithms;the dynamic correction forecasting method contributes to improve the prediction accuracy and promote the prediction capability of algorithms.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第12期2459-2465,2473,共8页 Journal of Zhejiang University:Engineering Science
基金 国家自然科学基金资助项目(U1509208 61573313) 浙江省科技厅重大科技专项资助项目(2015C03014) 中央高校基本科研业务费专项资金项目(2016FZA6004)
关键词 河流突发污染 污染物浓度预测 网格寻优 动态校正 卡尔曼滤波 river sudden pollution pollutant concentration prediction grid optimization dynamic correction Kalman filter
  • 相关文献

参考文献7

二级参考文献82

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部